Avaliação sazonal e atividade biológica dos constituintes voláteis das partes aéreas de Achyrocline satureioides (Lam.) D.C.

Vinícius Radaelli (IC),¹ Lucélia A. Balestrin (IC),¹ Carlos E. B. Linares (PQ),¹ Ubiratan F. da Silva (PQ)² Juliano S. Barin (PQ),¹ Érico M. M. Flores (PQ)² e Sandro R. Giacomelli (PQ)¹ Departamento de Ciências Exatas e da Terra, Universidade Regional Integrada do Alto Uruguai e das Missões,

Campus - Frederico Westphalen RS, Brasil ²Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brasil

Palavras Chave: Achyrocline satureioides, análise sazonal, constituintes voláteis

Introdução

A época de coleta é um dos fatores que mais influenciam na atividade farmacológica de drogas vegetais, visto que, a natureza dos constituintes ativos não é constante durante o ano. 1 Atualmente, são relatadas, por exemplo, variações sazonais no conteúdo de praticamente todas as classes de metabólitos secundários, tendo como destaque os óleos essenciais.²⁻⁴ Assim, sabendo-se que fatores temporais e espaciais afetam a qualidade e ação farmacológica de drogas vegetais, neste trabalho investigamos a variação sazonal dos constituintes voláteis de Achyrocline satureioides conhecida popularmente como macela e, aliado a isso, correlacionamos com a atividade antimicrobiana.

Resultados e Discussão

As partes aéreas, de A. satureioides coletadas na primavera, verão, outono e inverno foram obtidas de espécimes de crescimento espontâneo no Pólo de Modernização Tecnológica da URI - Campus -Frederico Westphalen/RS. Os constituintes voláteis foram obtidos por hidrodestilação em aparelho de Clevenger, quantificados (m/m), analisados e identificados por CG/EM, índice retenção de Kovats⁵ e padrões. O maior teor dos constituintes voláteis foi obtido na primavera (0,1 %), período que coincide com o estágio de desenvolvimento vegetativo acentuado (Tab. 1).

Tabela 1 – Rendimento dos constituintes voláteis de A. satureioides

71. Jalai Ciolaco.		
Estações	Rendimento (m/m)	
Primavera	0,1%	
Verão	0,05%	
Outono	0,03%	
Inverno	0.05%	

A análise cromatográfica dos constituintes voláteis revelou grande variabilidade em composição nas diferentes estações (Tab. 2). identificados 24 compostos correspondem a 93% do óleo, onde o α-pineno (21,9-34,2%) e o (E)-cariofileno (24,5-29,6%) são os constituintes majoritários em todas as estações. O aumento no teor de limoneno é evidenciado no inverno (11,8%) o que pode refletir uma adaptação da espécie sob condições adversas.

Tabela 2. Constituintes do óleo de *A. satureioides.*

Constituintes ⁷	Estações (%)			
	Prim.	Ver.	Out.	Inver.
α -pineno	34,2	21,9	24,5	25,7
$oldsymbol{eta}$ -pineno	1,4	0,8	0,9	1,6
Mirceno	0,6	0,4	0,2	0,6
α -terpineno	0,1	-	-	0,4
Limoneno	3,7	4,8	4,8	11,8
Z-Ocimeno	1,8	1,4	0,8	3,8
E-Ocimeno	0,4	0,5	0,4	0,3
<i>y</i> -pineno	0,2	0,3	0,2	0,5
Terpinoleno	0,3	0,2	0,2	0,4
α-copaeno	2,8	2,8	3,7	3,3
(<i>E</i>)-cariofileno	24,5	29,6	28,6	25,5
Aromadendreno	0,3	0,4	0,5	0,4
α -humuleno	2,9	4,3	3,1	4,2
allo-aromadendreno	0,6	0,7	0,8	0,6
γ-muuroleno	0,7	0,9	0,9	0,8
<i>cis</i> - β- guaieno	0,6	0,8	0,8	0,5
Ledeno	0,3	0,5	0,2	0,2
α -muuroleno	0,4	0,9	0,5	0,5
γ-cadineno	1,3	1,0	1,1	0,8
δ -cadineno	0,9	1,2	1,6	1,2
cadina-1,4-dieno	0,6	0,5	0,4	0,4
α -cadineno	0,5	0,5	0,5	0,4
α -calacoreno	0,4	0,5	0,5	0,4
óxido de cariofileno	0,6	1,9	2,7	1,0

apresentou óleo essencial A. satureioides atividade de: 340,1 µg/mL (prim.), 637,6 µg/mL (ver.) e 37,9 μg/mL (out.) frente a cepa de S. epidermidis; 755,8 µg/mL (prim.), 37,9 µg/mL (out.) frente a cepa de B. cereus e 604,6 μg/mL (prim.), 159,4 μg/mL (ver.), 37,9 μg/mL (out.) frente a cepa de K. pneumoniae, enquanto que, a atividade do óleo obtido no inverno foi maior que 1247,2 µg/mL frente a esses microorganismos.

Conclusões

As diferenças observadas no teor, na constituição química e atividade antimicrobiana do óleo essencial de A. satureioides sugerem ser decorrentes das condições climáticas, principalmente, temperatura e radiação, bem como, o estágio de desenvolvimento vegetativo da planta.

Agradecimentos

Furi, SCT-RS, FAPERGS, CNPq E CAPES

^{*} srgiacomelli@fw.uri.br

¹ Kutchan, T. M. *Plant. Physiol.* 2001, 125, 58.

Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. Biochem. Syst. Ecol. 2002, 30, 189.

³ Palá-Paúl, J.; Pérez-Alonso, M. J.; Velasco-Negueruela, A.; Palá-Paúl, R.; Sanz, J.; Conejero, F. Biochem. Syst. Ecol., 2001, 29, 663.

⁴ Schwob, I.; Bessiere, J. M.; Masotti, V.; Viano, J. *Biochem. Syst. Ecol.* **2004**, 32, 735.

Adams., R..P Identification of essential oil components by gás chromatography / mass spectroscopy. Ed. Allured Publishing. 1995.