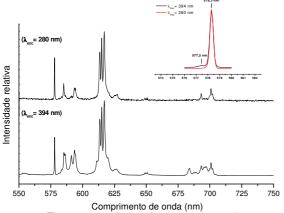
Espectroscopia eletrônica de íons Eu³⁺ em matriz de fosfato de lantânio

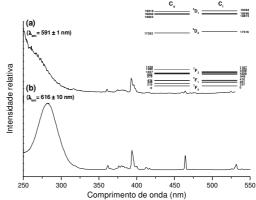
Paulo Cesar de Sousa Filho* (PG) e Osvaldo Antonio Serra (PQ) (*pcsfilho@aluno.ffclrp.usp.br)

Laboratório de Terras Raras – Departamento de Química – Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo. Av. Bandeirantes, 3900 – CEP 14040-901 – Ribeirão Preto, SP.


Palavras Chave: Európio, Fosfatos, Luminescência, Espectroscopia, Terras Raras.

Introdução

A estabilidade físico-química e as características estruturais favoráveis tornam os fosfatos de terras raras matrizes apropriadas para íons lantanídeos luminescentes. O fosfato de lantânio, por exemplo, é frequentemente estudado como matriz para íons Tm³+ e é amplamente aplicado em luminóforos verdes[1,2]. Dessa forma, a compreensão do comportamento espectroscópico de íons lantanídeos nessa matriz é fundamental para o desenvolvimento de novos luminóforos e para o aprimoramento dos atuais. Nesse trabalho, buscouse a avaliação do perfil espectral de íons Eu³+ em matriz de LaPO4, de modo a se obterem informações sobre a natureza química dos sítios ocupados pelos centros ativadores.


Resultados e Discussão

O luminóforo La_{0.99}Eu_{0.01}PO₄ foi sintetizado através de precipitação hidrotermal (~200 ℃, 4 h), a partir de soluções aquosas contendo nitratos de terras raras e tripolifosfato de sódio[2]. A análise de DRX mostra que, após tratamento térmico a 900 °C, o fosfato assume a estrutura monoclínica da monazita (P2₁/m), que permite a ocorrência de sítios cristalográficos de simetrias C_s , C_i e C₁. O espectro de emissão obtido (Fig. 1) difere muito dos frequentemente relatados na literatura similares^[2,3] composições apresentando predominância da transição $^5D_0 \rightarrow ^7F_2$ sobre a Tal fato é fundamental aplicabilidade desse fosfato, pois confere alta pureza de cor de emissão ao material (x≈0,66 e y≈0,34).

Figura 1. Espectros de emissão sob excitação em 280 nm e 394 nm.

A alteração do $\lambda_{\rm exc}$ (de 394 para 280 nm) leva ao desaparecimento de bandas adicionais no espectro de emissão, sugerindo a ocorrência de processos seletivos de excitação. Isso permite a identificação de dois sítios distintos na estrutura, ambos de baixa simetria (provavelmente C_s e C_i). Monitorando-se diferentes bandas de emissão, obtém-se o espectro de excitação seletivo para o sítio C_i (Fig 2.(a)), em que se observam menores intensidades da BTC em 280 nm e da transição $^5D_2 \leftarrow ^7F_0$ em 464 nm em relação à excitação de ambos os sítios (Fig 2.(b)).

Figura 2. Espectros de excitação ((a) λ_{em} =591 nm e (b) λ_{em} =616 nm) e diagramas parciais de níveis de energia do Eu³⁺ nos dois sítios da estrutura.

O posicionamento das bandas nos dois casos indica que os níveis de energia do Eu^{3+} em sítios C_i apresentam valores ligeiramente maiores, como consequência do efeito nefelauxético (associado à diferença da natureza ligante dos dois sítios, com NC=9 para o C_s e NC=8 para o C_i).

Conclusões

A avaliação do comportamento espectroscópico do Eu^{3+} comprova a existência de dois sítios de simetria para os cátions na matriz de $LaPO_4$, compatíveis com os grupos pontuais C_s e C_i . Suas características permitem uma relação estrita entre parâmetros estruturais e as teorias relacionadas à espectroscopia eletrônica, sendo que o $LaPO_4$: Eu^{3+} consiste num formidável exemplo de luminescência de íons lantanídeos em matrizes inorgânicas.

Agradecimentos

CAPES, CNPq e FAPESP.

¹ Feldman, C. et al.; Adv. Func. Mater. 2003, 13, 511.

² de Sousa Filho, P.C.; Serra, O.A.; *J.Lumin.* **2009,** *in Press.*

³ Dexpert-Ghys, J. et al.; J. Lumin. **1996**, 69, 203.