Eletrodos a base de PbO₂/TiO₂ para a degradação de soluções de formaldeído-metanol

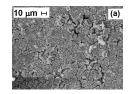
Geoffroy R.P. Malpass^{1*} (PQ), Douglas W. Miwa² (TC), Ana L.T. Fornazari² (PG), Sidney A. Neto³ (PG) Artur J. Motheo² (PQ), Adalgisa R. Andrade³ (PQ), Sérgio S.A. Machado² (PQ),

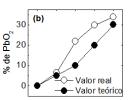
*geoffroy.malpass@ufabc.edu.br

Palavras Chave: PbO2, TiO2, Degradação eletroquímica foto-assistida, formaldeído.

Introdução

Estudos sobre a eletro-oxidação de compostos químicos orgânicos podem ser encontrados com facilidade na literatura. Dentre desses estudos destaque-se nos últimos 15 anos o uso dos chamados ânodos dimensionalmente estáveis (ADE®). Os ADE® possuem excelentes propriedades mecânicas e longa vida útil. Além disso, a composição pode ser variada para promover a combustão completa de uma dada substância orgânica até CO₂.


Mais recentemente, a aplicação simultânea de irradiação UV-vis com um potencial eletroquímico (degradação eletroquímica foto-assistida) tem mostrado resultados extremamente promissores para um amplo espectro de substâncias orgânicas, incluindo pesticidas e corantes. Formaldeído (FA) é uma substancia orgânica muito empregada na indústria, principalmente na produção de resinas e adesivos, e assim, tem uma grande incidência em esgotos industriais.


Este trabalho apresenta o estudo da degradação eletroquímica foto-assistida de FA usando eletrodos de composição nominal $Ti/Pb_XTi_{1-X}O_2$ (X=0,30;0,20;0,10;0,05=0). A escolha do material eletrodo se deve a tentativa de aproveitar as propriedades fotocatalíticas do TiO_2 e eletrocatalíticas do PbO_2 . No caso deste último, existe a possibilidade de formar O_3 em potenciais altos.

Resultados e Discussão

Os eletrodos foram fabricados através da decomposição térmica de sais precursores (na razão de Pb:Ti requerida), sobre um suporte de Ti metálico. O material obtido foi caracterizado por MEV, EDX e voltametria cíclica (VC). Eletrólises de soluções de 0,1 mol L⁻¹ FA + 0,033 mol L⁻¹ Na₂SO₄ (eletrólito suporte) foram feitas nos potenciais de 1,6; 1,8 e 2,0 V por 1h e a concentração de FA foi acompanhada por CLAE.

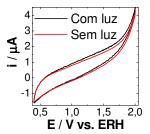

O material eletródico apresenta a morfologia do tipo "barro rachado" - típico de materiais produzidos por decomposição térmica (Fig.1a). A Fig. 1b apresenta o teor de PbO₂ presente nos eletrodos fabricados. Pode ser anotado que existe um enriquecimento na porcentagem de PbO₂ na camada de óxido.

Fig. 1: (a) Imagem de MEV de Ti/Pb_{0,1}Ti_{0,9}O₂. Mag: 1000x; (b) Teor de PbO₂ presente no óxido.

A caracterização eletroquímica por VC mostrou perfis típicos de eletrodos de óxidos. Este comportamento se manifesta na forma de uma região sem processos faradaicos (0,4 a 1,5 V) e depois, em potenciais mais positivos (>1,5 V) ocorre a reação de desprendimento de oxigênio (RDO) — Fig.2.

Fig. 2: Voltamograma ciclico de Ti/Pb_{0,2}Ti_{0,8}O₂ em 0,033 mol L⁻¹ Na₂SO₄, com e sem irradiação UV-Vis.

Para todas as composições, quando a superfície do eletrodo é irradiada com luz UV-Vis, observa-se que há um aumento na corrente e diminuição do potencial associados com a RDO (Fig. 2). Sendo que a degradação de substâncias organicas ocorre juntemente com a RDO, esta diminuição no potencial da RDO representa uma economia de energia. A adição de misturas de metanolformaldeído (0,1 mol L⁻¹) também se manifesta na forma de um aumento na corrente e diminuição do potencial associados com a RDO, conforme já observado neste laboratório.

Conclusões

Materiais a base de Ti/Pb_xTi_{1-x}O₂ são promissores para a degradação de subtancias organicas. Também serão apresentados os resultados de degradação potencistático e análise das figuras de mérito reelvantes – taxa de degradação, remoção de carbono orgânico total (COT) e eficiência energética.

Agradecimentos

FAPESP, CNPq.

¹ Centro de Ciências Naturais e Humanas (CCNH), Unversidade Federal do ABC, Santo André – SP.

² Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos – SP.

³ Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto – SP.