MODELO MOLECULAR PARA A VISUALIZAÇÃO DA ESTRUTURA DA QUITOSANA

Dhiego Souto Montenegro* (IC)¹, Afrânio Gabriel da Silva (PQ)², Tarsila Gabriel Castro (IC)², Adjanny Vieira Brito de Araujo (IC)³, Vandeci Dias dos Santos (PQ)¹. *dhiegoshicanai@hotmail.com

1. Departamento de Química, Universidade Estadual da Paraíba – UEPB; 2. Departamento de Química, Universidade Federal da Paraíba – UFPB; 3. Departamento de Física, Universidade Estadual da Paraíba – UEPB;

Palavras Chave: modelos, moléculas, educação.

Introdução

Na visualização da estrutura geométrica de uma molécula, a noção espacial do arranjo dos átomos é fundamental para a correta identificação da forma estereoquímica de diversas substâncias e sua aplicabilidade no reconhecimento da estrutura, bem como a correlação de suas reatividades. A Química Computacional, hoje já reconhecida como área de pesquisa em Química, pode ser uma ferramenta importante para a Educação em Química. A partir de alguns pacotes computacionais de Química Teórica possível descrever propriedades estruturais, vibracionais e eletrônicas de diversos compostos e, por último, gerar tabelas com dados estruturais tais como distâncias internucleares e ângulos entre as ligações. Tabelas com dados estruturais também poderiam ser geradas a partir de estudos de cristalografia de monocristal, mas como a quitosana é um composto polimérico, é difícil a obtenção de monocristais, dessa forma, trabalhos científicos com dados estruturas desse monômero (quitosana) não têm sido relatados. A construção de modelos físicos semelhantes aos reais só foi possível com a utilização de dados obtidos por cálculos. A utilização de modelos físicos nas aulas é importante, pois pode ajudar aos estudantes de Química, a compreensão e entendimento de conceitos como hibridização, comprimentos e ângulos de ligação, geometria molecular e outros tais como polaridade e interações intermoleculares.

Resultados e Discussão

Para a construção deste modelo foram utilizados MOPAC os programas: 2007 е WebLab ViewerPro 3.12. O modelo de molécula da quitosana, construída (com base na estrutura, Figura 1, e Tabela de comprimentos de ligação) apresenta como principal característica flexibilização de suas ligações. Sabemos que moléculas reais não são rígidas. O modelo foi construído com esferas de polietileno de 35.55 mm de diâmetro, tubos de CPVC para as ligações e tubos flexíveis de látex. As esferas foram marcadas em seus ângulos e perfuradas de acordo com a disposição apresentada nas tabelas de dados estruturais geradas com uso dos programas. Esses dados serviram de base para a construção da molécula da quitosana.

32ª Reunião Anual da Sociedade Brasileira de Química

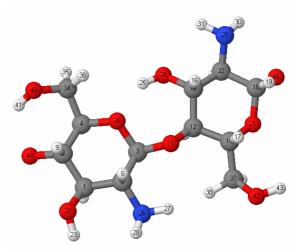


Figura 1. Estrutura da Quitosana.

Tabela 1: Distâncias internucleares

Átomos	2R	Átomos	2R	Átomos	2R	Átomos	2R
1 – 2	1.56	4 – 20	1.46	14 – 21	1.45	32 – 29	1.49
1 – 5	1.55	4 – 34	1.54	14 – 37	1.54	32 – 33	1.12
1 – 7	1.11	5 – 9	1.12	18 – 19	1.11	34 – 35	1.11
1 – 22	1.43	5 – 44	1.46	18 – 21	1.46	34 – 36	1.11
2 – 3	1.55	11 – 12	1.48	18 – 32	1.55	34 – 40	1.42
2-6	1.12	12 – 13	1.55	18 – 45	1.43	37 – 38	1.11
2 – 26	1.49	12 – 14	1.55	22 – 23	0.98	37 – 39	1.11
3 – 10	1.11	12 – 15	1.11	24 – 25	1.0	37 – 42	1.43
3 – 11	1.44	13 – 16	1.11	26 – 27	1.02	40 – 41	0.99
3 – 20	1.46	13 – 24	1.43	26 – 28	1.02	42 – 43	0.98
4 – 5	1.55	13 – 32	1.56	29 – 30	1.02		
4 – 8	1.11	14 – 17	1.11	29 – 31	1.02		

2R=Distância Internuclear (Å), onde R=raio atômico

Conclusões

O modelo construído apresenta as características que foram propostas neste trabalho, tendo ângulos de ligações e distâncias internucleares de acordo com as tabelas de dados estruturais e também é flexível, assemelhando-se às moléculas reais cujas estruturas não são rígidas.

Agradecimentos

- A Universidade Estadual da Paraíba;
- A Universidade Federal da Paraíba:
- CNPa.

¹ Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. *J. Am. Chem. Soc.* **1986**, *108*, 3335.

²1 Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. *J. Am. Chem. Soc.* **1986**, *108*, 3335.

³ Muslim, T.; Morimoto, M.; Saimoto, H.; Okamoto, Y.; Minami, S. & Shigemasa, Y. - Carbohydrate Polymers, **2001**, *46*, 323.