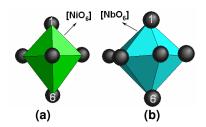
Efeito do metal de transição sobre a polarização espontânea em niobatos de estrutura tetragonal tungstênio bronze

Silvania Lanfredi (PQ)*, Alan Rogério F. Lima (IC), Marcos Augusto Lima Nobre (PQ)

Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF, Departamento de Física, Química e Biologia – DFQB, Faculdade de Ciências e Tecnologia – FCT, Universidade Estadual Paulista – UNESP - C.P. 467, CEP: 19060-900, Presidente Prudente – SP.

*silvania@fct.unesp.br

Palavras Chave: KSr₂(NiNb₄)O_{15-δ}, Difração de raios X, Caracterização estrutural.


Introdução

Os materiais cerâmicos com estrutura tipo Tetragonal Tungstênio Bronze (TTB), assim como os materiais com estrutura perovskita, possuem alta constante dielétrica, alta polarização e propriedades piezoelétricas. Estas propriedades tornam estes óxidos ferroelétricos materiais de grande interesse tecnológico, em particular na área de "wireless telecommunication" ¹. Neste trabalho foi realizada a caracterização estrutural do niobato de estrôncio e potássio dopado com níquel de estequiometria KSr₂(NiNb₄)O_{15-δ}, de estrutura TTB, preparado pelo método de moagem de alta energia.

Resultados e Discussão

A fase $KSr_2(NiNb_4)O_{15-\delta}$ foi preparada utilizando-se o método de ativação mecânica por moagem de alta energia². Os reagentes de partida utilizados foram: K₂CO₃, SrCO₃, Ni₂O₃ e Nb₂O₅. nH₂O. O processo de moagem dos reagentes foi realizado em um moinho tipo atritor da marca NETZSCH. A velocidade de rotação utilizada foi de 1200 rpm durante 5 horas. O pó precursor de KSr₂NiNb₄O_(15-δ) foi calcinado a 1150 °C em diferentes tempos (0,5 a 12 horas), em atmosfera de oxigênio. A caracterização estrutural foi realizada por difração de raios X, sendo os parâmetros estruturais determinados pelo método de Rietveld, utilizando-se o programa Fullprof 3. A difração de raios X mostrou a presença de pós monofásicos associados ao KSr₂Nb₅O₁₅, identificado pela ficha JCPDS: 34-0108 de simetria tetragonal. A partir dos dados de ocupação relativa (P), coordenadas atômicas (x, y, z), parâmetros de rede : a = 12,466 Å, c = 3,939 Å, o volume $V_{cel.} = 612,12$ Å³ e grupo espacial P4bm (100), obtidos no refinamento 4, foi possível a representação gráfica da estrutura do $KSr_2(NiNb_4)O_{15-\delta}$, utilizando o programa CaRine Crystallography 3.1® 5. As distâncias interatômicas das ligações Nb-O nos sítios octaédricos foram determinadas. octaedros de NiO6 e NbO6 da estrutura do KSr₂(NiNb₄)O_{15-δ} são mostrados nas Fig. 1 (a) e 1 (b), respectivamente. Ambos os poliedros mostramse distorcidos, sendo que os octaedros de [NiO₆] apresentam menor volume que os octaedros de [NbO₆]. Isto resulta em uma diminuição do volume da célula unitária, comparando-se com a estrutura do KSr₂Nb₅O₁₅. Os comprimentos de ligações entre o nióbio e oxigênios apicais (O1 e O6) são

diferentes, fenômeno que pode ser associado à posição fora do centro.

Figura 1. Representação esquemática de um sítio octaédrico: (a) NiO₆ e (b) NbO₆.

A polarização espontânea, P_S , do $[NbO_6]$ depende da magnitude do deslocamento fora do centro, $\Delta z.$ O parâmetro P_S 6 é dado por P_S =(258 \pm 9) Δz μC cm 2 . A subtração das distâncias (Nb-O6) - (Nb-O1) é proporcional a duas vezes ao deslocamento $\Delta z.$ Assim, o pó precursor tratado termicamente por 0,5 e 12 horas apresentou polarização espontânea igual a 64,7 $\mu C.cm^{-2}$ e 116 $\mu C.cm^{-2},$ respectivamente.

Conclusões

A distorção dos poliedros [NiO₆] e [NbO₆] é função do tempo de tratamento térmico, sendo compatível com o desenvolvimento de rotação e inclinação dos poliedros. O octaedro [NbO₆] mostrou um aumento do comprimento da ligação (Nb-O6), indicando inclinação do octaedro com relação à direção do eixo apical.

Agradecimentos

CNPq e FAPESP pelo apoio financeiro.

¹ Kolar, D.; Glaberscek, S.; Stadler, Z. e Suvorov, D. Ferroelectrics **1980**, 27, 269.

² Lanfredi, S.; Trindade, L. R.; Barros, A. R.; Feitosa, N. R. e Nobre, M. A. L. *Cerâmica* **2005**, *51*, 151.

³Carvajal, J. R., *An introduction to the program FullProff 2000* (version February 2008), Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, France, **2008**.

⁴ Dantas, S.A.; Salmazo, L.O.; Nobre, M.A.L. e Lanfredi, S. Resumos da 31^a Reunião Anual da Sociedade Brasileira de Química, Águas de Lindóia, 2008.

⁵ Boudais, C.; & Monceau, D.; CaRIne Crystallography 3.1^(R), France, 1998

⁶ Abrahams, S.C.; Kurtz, S.K. e Jamieson, P.B. *Phys. Rev.* **1968**, 172, 551