Desenvolvimento de sistema SIA para determinação quimioluminométrica de ozônio em águas potáveis

Daniele Cristina Muniz B. dos Santos¹* (PG), Maria das Graças A. Korn¹ (PQ), Maria Lúcia F. S. Saraiva² (PQ), Paula Cristina de Azevedo G. Pinto² (PQ), José Luís F. C. Lima² (PQ), Mauro Korn³ (PQ). *dany.qui@hotmail.com

Palavras Chave: ozônio, quimiluminescência, SIA

Introdução

O método mais comum utilizado para a desinfecção e purificação de água potável é a cloração. Porém alguns compostos organoclorados podem ser formados durante este processo. Logo o ozônio tem sido amplamente utilizado para tal função. Além de ser um forte agente oxidante, permite uma esterilização eficiente, frente ao cloro e, uma menor quantidade de trialometanos são formados. [1,2] Contudo, níveis elevados de ozônio são danosos e podem ser prejudiciais à saúde humana, exigindo o monitoramento da sua concentração em água potável. Desta forma neste trabalho foi proposto um sistema de análise por injeção sequencial para determinação de O₃ em água baseado na quimiluminescência deste com luminol.

Resultados e Discussão

Parâmetros físico-químicos como pH, concentração do luminol, volumes de amostra e reagente, ordem de aspiração e tampão foram estudados para obter o melhor desempenho analítico.Uma solução estoque de ozônio foi obtida de acordo com o DIN EN ISO 7393 (Merck) e utilizada para fazer os padrões.

A repetibilidade do método foi avaliada e o coeficiente de variação foi menor que 2,93%. O método proposto mostrou-se linear na faixa de concentração de $0,05-2,00~\text{mg L}^{-1}$, com coeficiente de determinação (R^2) de 0,9998. Limites de detecção e quantificação de 0,04 e 0,07 mg L^{-1} foram respectivamente calculados.

O ciclo analítico desenvolvido permitiu a determinação de ozônio em 20 segundos com um consumo de 200 µL de amostra e 200 µL de luminol.

A exatidão dos resultados foi avaliada por comparação com os obtidos por método de referência (espectrofotometria de absorção molecular no UV a 260 nm e absortividade molar de

3.300 L mol⁻¹ cm⁻¹ [2]). Não foram observadas diferenças significativas para 95% de confiança. Os resultados obtidos para as amostras de água potável estão mostrados na Tabela 1.

Tabela 1. Comparação dos resultados obtidos em amostras de água potável com a metodologia SIA e o método de referência.

Amostras	SIA (mg L ⁻¹)	UV (mg L ⁻¹)	Erro (%)
1	0,381 ± 0,004	0,373 ± 0,008	2,14
2	0,215 ± 0,008	0,208 ± 0,008	3,37
3	$0,45 \pm 0,01$	0,456 ± 0,008	-0,88
4	0,673 ± 0,005	0,66 ± 0,02	2,75
5	0,764 ± 0,006	0,790 ± 0,030	-3,29
6	0,74 ± 0,02	0,73 ± 0,04	0,55
7	0,380 ± 0,002	0.39 ± 0.02	-3,31

Conclusões

A metodologia proposta constitui um método, versátil e uma alternativa simples para a determinação de ozônio em águas, atendendo a economia de reagentes e produzindo pouco resíduo, concordando com as recomendações da atual química verde.

Agradecimentos

Ao CNPQ, FAPESB, CAPES e GRICES

¹ NQA-PRONEX-GPQA, Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-280, Salvador – BA, Brasil

² REQUIMTE, Serviço de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal

³ SonoFIA / DCET, Universidade do Estado da Bahia, Estrada de Barreiras, s/n 41195-001, Salvador-BA, Brasil

¹ Toshio Takayanagi, T.e Dasgupta, P.K. Talanta 2005, 66, 823.

² Baeza M.; Alonso, J. e Bartrolí, J. *Anal Bioanal Chem 2005, 382, 388.*

³²ª Reunião Anual da Sociedade Brasileira de Química