Síntese e Caracterização de complexo de Cobre (II) com o dipeptídeo metionina-metionina.

Aline C. de Moraes* (PG), Bárbara L. Almeida (PQ), Judith Felcman (PQ).

Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química – Rua Marquês de São Vicente, 255 – 22453-900 Rio de Janeiro - RJ.

* aline_cmr@yahoo.com.br

Palavras Chave: cobre (II), dipeptídeo, síntese.

Introdução

Dipeptídeos são ligantes usados como modelo para o estudo da interação de metais com as proteínas presentes no meio biológico. Estes estudos mostram que, geralmente, a complexação ocorre através do oxigênio do grupo carboxilato, do nitrogênio do grupo amino e pelo nitrogênio desprotonado da ligação peptídica. No entanto, quando o dipeptídeo contém algum átomo doador em sua cadeia lateral, este também pode participar da esfera de coordenação¹. Na literatura, observase que há poucos trabalhos a respeito deste tipo de interação. Neste trabalho, foi sintetizado um complexo de cobre com o dipeptideo Metioninametionina (Metmet) (figura 1).

Resultados e Discussão

Foi obtido um sólido marrom a partir do $CuCl_2$ e do ligante livre em meio aquoso, à temperatura ambiente na proporção 1:1. As caracterizações realizadas foram: CHN, absorção atômica, TGA, IV, Raman, UV, condutivimetria e ponto de fusão.

Figura 1. Dipeptídeo Met-Met

Os dados da análise elementar – teo.% (exp.%): C: 27,18 (28,23); H: 5,24 (5,23); N: 6,34 (6,71); Cu: 14,38 (14,20) - concordam com a fórmula [Cu $(C_{10}H_{18}O_3N_2S_2)$ (H_2O)]2HCl-½H₂O. A condutividade do composto em solução é 275,4 µs. cm⁻ (10⁻³mol/L, H₂O, 25°C). A presença de cloreto foi determinada qualitativamente por meio do ensaio com AgNO₃, com prévio tratamento da amostra para a eliminação da interferência do enxofre. O TGA confirma a presença de água de hidratação (Tabela 1). O complexo decompõe na faixa (120-125)°C - o ligante funde à 228°C. Os dados obtidos com o espectro de Raman e na região do IV (Tabela 2) sugerem a presença da ligação Cu-S e mostram deslocamentos das principais bandas do ligante quando comparado ao complexo. As atribuições estão de acordo com trabalhos previamente publicados de cobre com outros dipeptídeos¹⁻⁴.

Tabela 1. Análise termogravimétrica do complexo

- 7	Zubeta 10 i manee termogra i metrica de compiene						
	ΔT (°C)	% perda	Massa Teórica (Exp.)	Espécie Provável			
	21,74 - 162,22	1,99	9,00 (8,84)	½ H ₂ O			
	162,22 - 900	69,28	307,18 (306,16)	H ₂ O 2HCl Ligante			
	Resíduo	28,71	125, 62 (126,89)	CuOSN			

Tabela 2. Principais abs. no IV (KBr/polietileno cm⁻¹) e Raman

Atribuição	Ligante	Complexo: IV (Raman)		
ν (NH ₂)	3218,38	3399,51		
δ (NH ₂)	1603,01	1614,41 (1619, 22)		
ν (N-H) amida II	3327,69	-		
$v_{as}(COO^{-})$	1577,82	1594,49 (1596,12)		
$\nu_{\rm s}({\rm COO}^{\text{-}})$	1415,55	1423,44 (1420,06)		
ν (Cu-N)	-	438,96 (435,94)		
ν (Cu-O)	-	356,88 (364,00)		
v (Cu-S)	-	269,23 (259,97)		

Após dissolução, a coloração marrom do complexo obtido passa para azul. O espectro eletrônico na região do UV-Vis do complexo apresenta $\lambda_{\text{máx}}$ = 658,54 nm e ϵ = 15,78 (mol⁻¹.cm¹⁻), (Solvente: H₂O, [] = 10⁻³ mol.L⁻¹).

Conclusões

Os resultados obtidos sugerem que a complexação envolve os dois nitrogênios, o oxigênio do grupo carboxilato e enxofre, confirmado pelos dados de IV e Raman e sugerem que a coordenação do átomo de enxofre presente na cadeia lateral do dipeptídeo, ocorre apenas no estado sólido. Em solução, possivelmente suas posições passam a ser ocupadas por moléculas de água, em virtude de o mesmo ser um ligante de campo mais fraco.

Agradecimentos

Agradecemos ao CNPQ.

¹Facchin, G.; Baran, E. J.; *Et al*, Polyhedron, **2006**, *25*,2*598*.

²Facchin, G.; Baran, E. J.; *Et al*, Journal of Inorg. Biochem., **2002**, *89*,174.

³Bellamy, L. B., the infrared spectra of complex molecules, **1968**, Wiley.

⁴Nakamoto, K, Infrared and Raman Spectra of Inorganic coordination Compounds, **1963**, wiley.