Complexos fosfínicos de Pd (II) com Bases de Schiff derivadas de ditiocarbazatos.

Angelica E. Graminha¹* (PG), Eduardo E. Castellano² (PQ), André G. A. Fernandes³(PG), Pedro I. S. Maia³(PG), Vitor M. Deflon³(PQ) Alzir A. Batista¹(PQ). anggra.a@gmail.com

¹Departamento de Química, Universidade Federal de São Carlos, UFSCar, São Carlos – SP ²Departamento de Física, Universidade de São Paulo, USP, São Carlos - SP ³Departamento de Química, Universidade de São Paulo, USP, São Carlos - SP

Palavras Chave: Complexos, Paládio, Bases de Schiff, ditiocarbazatos.

Introdução

Complexos metálicos contendo Bases de Schiff derivadas de S-benzil e S-metilditiocarbazato estão sendo usados como agentes antitumorais. antibacterianos e antifúngicos¹. Após a descoberta da ação antitumoral da cisplatina, atividade antitumoral de diversos complexos de Pd(II), pertencentes ao grupo da platina, tem sido relatada². Sabendo que variações estruturais a modificações conduzem significativas na atividade biológica de drogas³ e que ligantes fosfínicos apresentam atividade citotóxica e antitumoral⁴, preparamos complexos de Pd (II) de ditiocarbazatos derivadas de benzoilacetilacetona (FACACR, Figura 1), a partir de [PdCl₂(PPh₃)₂].

Figura 1: Estrutura representativa dos ligantes FACACF e FACACFNO₂.

Resultados e Discussão

Medidas de condutividade molar indicam a formação de complexos neutros. Dados de microanálise e IV sugerem a obtenção de compostos do tipo [Pd(FACAC**R**)PPh₃] (**R** = *S*-benzil ou *S*-p-nitrobenzil). A estrutura cristalográfica de[Pd(FACACF)(PPh₃)] foi determinada. O arranjo ao redor do metal é um quadrado planar levemente distorcido (0.021 Å), com uma PPh₃ *trans* ao nitrogênio N(1) do ditiocarbazato (Figura 2).

Figura 2: Estrutura cristalográfica do complexo [Pd(FACACF)(PPh₃)]

32ª Reunião Anual da Sociedade Brasileira de Química

Espectros de RMN ${}^{31}P{}^{1}H{}$ dos complexos apresentam um singleto em torno de δ 26 ppm, indicando fósforos *trans* a nitrogênio (Figura 3).

Figura 3. Espectro de RMN de ${}^{31}P$ { ${}^{1}H$ } de [Pd(FACACF)(PPh₃)] e estrutura representativa (CH₂Cl₂).

Os voltamogramas cíclicos dos complexos foram obtidos em DMF (0,1 M PTBA) e apresentam um processo irreversível atribuído à oxidação Pd²⁺/Pd³⁺ (0,95 - 0,99 V). Em seguida uma nova espécie é formada e a sua redução ocorre em aproximadamente 0,060 V *Pd³⁺/*Pd²⁺ (Figura 4).

nova espécie

Figura 4: Voltamogramas cíclicos dos complexos (a)[Pd(FACACFNO₂)(PPh₃)] e (b)[Pd(FACACF)(PPh₃)].

Conclusões

Foram obtidos e caracterizados dois novos complexos de Pd (II), em que os ditiocarbazatos dianiônico coordenam-se tridentado (O-N-S). Estudos eletroquímicos mostram a formação de uma nova espécie após a oxidação Pd²⁺/Pd³⁺.

Agradecimentos

FAPESP e CNPq

¹ Chinnusamy, V.; Muthusamy, G.; Natarajan, K.; Synth. React. Inorg. Met.-Org. Chem. 1994, 24(4), 561.

- Beraldo, H.; Gambino, D. Mini Reviews Med. Chem. 2004, 4, 31.
- ⁴ Queiroz, S. L.; Batista, A. A. *Química Nova* **1996**, *19*, 651.

² Farrel, N.; *Transition Metal Complexes as drugs and chemoterapeutic agents*. Dordrecht, Kluver Acad. Publ., **1989**