Potencial mutagênico (teste de micronúcleo) e composição química dos óleos essenciais de *Lippia sidoides e L. origanoides.*

Isabela Mariana de S. M. Cavalcante¹ (IC), Lucas Maciel M. Marques¹ (IC), Antônia Mª das Graças Lopes Citó¹ (PQ), José Arimatéia D. Lopes ¹ (PQ), Maria das Graças F. de Medeiros² (PQ), Ana Amélia de C. M. Cavalcante¹ (PQ).

Palavras Chave: Lippia sidoides, Lippia origanoides, óleo essencial, mutagenicidade.

Introdução

As plantas medicinais representam uma fonte importante de compostos bioativos. Trabalhos realizados com óleos essenciais de espécies do gênero Lippia têm demonstrado importantes farmacológicas, tais como: atividade antimicrobiana, antifúngica e antiparasitária1. Os constituintes destes podem também se constituírem em fonte de dano ao DNA. Dentre os testes preconizados pelas agências internacionais, para avaliar essa atividade, há o teste de micronúcleo em medula óssea de roedores in vivo, amplamente aceito e recomendado para a avaliação e o registro de novos produtos químicos e farmacêuticos que entram anualmente no mercado mundial². O objetivo desse trabalho foi identificar os constituintes dos óleos essenciais de duas espécies de Lippias: L. origanoides e L. sidoides e avaliar a atividade mutagênica da primeira. A L. origanoides foi coletada no município de José de Freitas - Piauí, em agosto, e a L. sidoides foi coletada no Horto de Plantas Medicinais da UFPI, em setembro.

Resultados e Discussão

Os rendimentos dos óleos essenciais obtidos através de hidrodestilação foram de: 4,6% para Lippia origanoides e 2,13% para a Lippia sidoides. Na análise por CG-EM, observou-se que os principais constituintes voláteis identificados em Lippia origanoides foram: (1) carvacrol (43,96%), (2) 1,8-cineol, (22,75%), (3) γ -terpineno (8,87%), (4) timil metil éter (7,08%) e (5) acetato de carvacrol (4,60%), (Figura 1). As prinicipais substâncias voláteis identificadas na Lippia sidoides foram: (1) carvacrol (23,56%), (2) trans-cariofileno (23,36%), (3) p-cimeno(13,79%), (4) (E)-2,7-dimetil-3-octen-5eno (9,39%), e (5) viridifloreno (5,45%), (**Figura 2**). Para o 1,8-cineol, conhecido como eucaliptol e para o carvacrol, há extensos relatos na literatura sobre suas conhecidas atividades antimicrobiana^{4,5}. Com o teste preliminar de micronúcleos, realizado apenas para a Lippia origanoides, encontrou-se uma tendência a mutagênese perante uma dose de 0,2 mL com concentração de 3 mg mL⁻¹.

Figura 1- Cromatograma de íons totais (TIC) dos constituintes voláteis obtidos por hidrodestilação a partir do óleo essencial de *Lippia origanoides* de ago/07.

Figura 2- Cromatograma de íons totais (TIC) dos constituintes voláteis obtidos por hidrodestilação a partir do óleo essencial de *Lippia sidoides* de set/07.

Conclusões

Observou-se que a *Lippia origanoides*, apresentou como constituintes majoritários o carvacrol e o 1,8-cineol e a *Lippia sidoides* mostrou que seus constituintes majoritários são o carvacrol e o *trans*-cariofileno. O teste preliminar do óleo essencial de *Lippia origanóides* apresentou efeito agressor sobre as células dos camundongos na dose aplicada.

Agradecimentos

Ao CNPq pelas bolsas concedidas: Lucas M. Mauriz Marques e a Isabela Mariana de S. M. Cavalcante . Ao LAPETRO pelo apoio.

- 1- Carvalho, P. B.; Fereira, E. I. Fitoterapia. 2001, 72, 599.
- 2- Ribeiro, L. R.; Salvadori, D. M. F.; Marques, E. K. *Mutagênese Ambiental*. Editora da ULBRA: Canoas-RS. **2003**, 356p.
- 3- Adams; R. P. Identification of essential oil components by Gas Chromatography / Mass Specrotmetry, 4th., *Allured Publishing Corpation: USA.* **2007**, 804p.
- 4- Chimou, I.; Liolios; C.C., Gortzi, O.; Lalas, S., Tsaknis, J. Food Chemistry. 2008, 112, 77.
- 5- Juergens, U.R.; Dethlefsenw, U.; Steinkampz, G.; Gillissen, A. Respiratory Medicine. 2003, 97, 250.

¹Dpto. de Química – Universidade Federal do Piauí – UFPI, Campus Universitário Ministro Petrônio Portella - Bairro Ininga - CEP: 64.049-550, Teresina – PI. *arilopes@ufpi.edu.br

²Dpto. de Bioquímica e Farmacologia da Universidade Federal do Piauí – UFPI