Resolução de Substratos utilizando-se Fosfolipase A₂ de Veneno de Serpentes

Renan A. S. Pirolla (PG)¹, Sérgio Marangoni (PQ)² Paulo J. S. Moran (PQ)¹, J. Augusto R. Rodrigues (PQ)¹

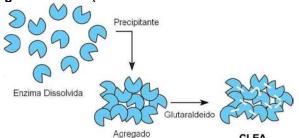
¹Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP 13084-971, Campinas-SP, Brasil. Tel:+55-19-3521-3041; e-mail: jaugusto@igm.unicamp.br

Palavras-chave: Biocatálise, CLEA, Fosfolipase A2

Introdução

O uso de enzimas em química orgânica sofre um aumento a cada dia, principalmente por oferecerem reações em condições mais brandas (como temperatura e pH fisiológicos, serem biodegradáveis) e possuírem altas quimio-, regio- e estéreo-seletividades. Entretanto, a reutilização das enzimas se torna difícil sem a sua imobilização.

Dos diversos tipos de imobilização, um vem recebendo grande atenção, o agregado enzimático unido por ligações cruzadas (Cross-Linked Enzyme Aggregate – CLEA). É um método recente e muito simples, que consiste na ligação covalente cruzada de uma enzima precipitada (não necessita de cristalização).


Dessa forma, o presente trabalho foi realizado a fim de se estudar o potencial catalítico das fosfolipase A_2 (PLA₂) do veneno de serpentes imobilizadas por CLEA.

Resultados e Discussão

Inicialmente prepara-se o CLEA dissolvendo-se 0.5~mg da $\text{PLA}_2~\text{em}$ 1 mL de tampão TRIS-HCl pH 8.0.~Então, adiciona-se 0.5~mL de solução de Sulfato de Amônio para formação do agregado enzimático e, 40~min depois, $100~\text{\muL}$ de solução aquosa de glutaraldeido, mantida a noite toda sob agitação. Estudos prévios mostraram serem essas as melhores condições de formação do CLEA, com leve aumento da atividade enzimática.

As enzimas utilizadas no trabalho foram purificadas a partir do veneno de serpentes *Crotalus durissus terrificus*.

Figura 1. Formação do CLEA.

Após formado o CLEA, foram feitas as reações de biocatálise utilizando todo o agregado formado em 1 mL de tampão TRIS-HCI/CaCl₂/NaCl pH 8.0 e 1 mg de substrato dissolvido em 0,5 mL de

acetonitrila. Também foram feitas reações utilizando a enzima livre, para comparação.

Os CLEA's formados foram testados e reutilizados, sendo observado que em até 4 reusos a atividade enzimática é mantida.

Os substratos utilizados nas reações de biocatálise foram o binol, tetralol, 1-feniletanol e *p*-nitro-1-feniletanol. Esses substratos foram esterificados formando ésteres com diferentes tamanhos de cadeia (R).

Tabela 1. Resultados obtidos nas hidrólises dos diferentes ésteres dos substratos.

Catalisador	Substrato	R	Rendimento	e.e.
CLEA -	Binol	CH₃CO	0	-
	Tetralol	CH ₃ CO	45%	16%
		C_2H_5CO	40%	3%
		$C_5H_{11}CO$	0	-
	1-feniletanol	CH ₃ CO	ND	-
		C_2H_5CO	35%	6%
	p-NO₂-1- feniletanol	CH ₃ CO	49%	5%
		C_2H_5CO	40%	6%
Enzima Livre	Binol	CH ₃ CO	0	-
	Tetralol	CH ₃ CO	33%	3%
		C_2H_5CO	8%	1%
		$C_5H_{11}CO$	3%	0
	1-feniletanol	CH ₃ CO	ND	-
		C_2H_5CO	20%	3%
	p-NO₂-1- feniletanol	CH ₃ CO	40%	19%
		C ₂ H ₅ CO	14%	10%

ND – Não Detectado

Conclusões

Os resultados indicam atividade enzimática. Ao compará-los tanto usando CLEA's quanto a PLA2 livre nota-se que nas reações com o agregado os produtos de hidrólise foram obtidos com maior e.e. para o acetiltetralol, e as reações com a enzima livre tiveram maior e.e. para o p-Nitro-1feniletanol.

Agradecimentos

À FAPESP, CNPq e CAPES pelo suporte financeiro.

²Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas-SP, Brasil.