Análise estrutural de peneiras moleculares CAL - 2 através da Ressonância Magnética Nuclear de alta resolução e difração de raios-X.

Fábio Aurélio Bonk (PQ)*, Darlene Felix (IC) e Heloise O. Pastore (PQ)

Grupo de Peneiras Moleculares, Instituto de Química – Universidade Estadual de Campinas, CP 6154, Campinas, SP, Brazil. (<u>fabonk@gmail.com</u>)

Palavras Chave: Peneiras Moleculares, Silicoaluminofosfato, RMN, MQMAS.

Introdução

Neste trabalho foi estudada a estrutura atômica de um conjunto de peneiras moleculares de silicoaluminofosfatos (SAPO) denominadas CAL-2,^[1] preparadas a partir de AIPO-kanemita e duas fontes de silício com diferentes concentrações de água. As técnicas utilizadas na caracterização foram a difração de raios-X e a ressonância magnética nuclear de ³¹P, ²⁹Si e ²⁷Al. Através dos resultados obtidos foi demonstrada a estrutura do material e a substituição isomórfica de átomos de fósforo por silício formando sítios de Brönsted. Observou-se também a formação de ilhas de silício na rede SAPO relacionadas com a formação outros 4 tipos de sítios ácidos.

Resultados e Discussão

As fontes de silício usadas no preparo dos materiais foram a sílica pirolisada e o silicato de tetraetilamônio (TEA). As concentrações dos géis de síntese são dadas na Tabela -1.

Tabela 1. Diluições dos géis de síntese do conjunto de peneiras moleculares CAL-2.

Razão molar	Códigos	
H ₂ O/SiO ₂	Sílica Pirolisada	Silicato de TEA
100	SP-100	ST-100
18,8	SP-18,5	ST-18,5
15,0	SP-15,5	ST-15,5

Os experimentos de difração de raios-X, demonstraram a formação da estrutura chabasita em todos os procedimentos de síntese.

Através da RMN de estado sólido do ²⁹Si, exemplificado na Figura 1 para o composto ST-100, foi possível a identificação e quantificação da formação de quatro diferentes tipos de sítios ácidos: Q⁰(Si4AI), Q¹(Si3AI,1Si), Q²(Si2AI,2Si), Q³(Si1AI3Si) bem como a formação de ilhas de silício Q⁴(0AI,4Si).

Através da RMN do ²⁷Al pela técnica 3QMAS foi possível observar a formação de um quinto sítio ácido do tipo AlO₄(Q⁴)^[2] devido a inserção de átomos de alumínio no interior das ilhas de silício e portanto, sítios zeolíticos em SAPO.

Na Figura 2 este sítio é indicado pelo número 1.

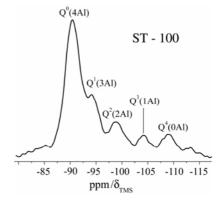


Figura 1. ²⁹Si RMN do composto ST-100.

O sítio 2 está associado a formações Al(OP)₄ e os sítios 3 e 4 podem estar associados a átomos de ²⁷Al nas bordas das ilhas de silício ou ocasionados por distorções na rede do material.

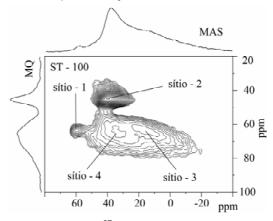


Figura 2. 3QMAS ²⁷Al RMN do composto ST-100.

Conclusões

Através da RMN de estado sólido demonstrou-se a formação de pelo menos 5 tipos de sítios ácidos em SAPO pertencentes à rede estrutural do material, sendo um deles de caráter zeolítico.

Agradecimentos

Os autores agradecem à FAPESP pelo suporte financeiro a este trabalho. DF agradece também à FAPESP pela bolsa de Iniciação Científica e FAB à CAPES pela bolsa PRODOC.

- [1] Patente Brasileira, INPI 018060038592 (2006).
- [2] Multinuclear Solid-State NMR of Inorganic Materials. Mackenzie, K. J. D and Smith, M. E. Pergamon materials series, 2002.