Uso de Ditiocarbazatos O,N,S-Doadores na Obtenção de Complexos de Rênio(V) Modelos para Química Medicinal Nuclear do Tecnécio

Leandro M. C. Neves (IC)¹, André Gustavo de A. Fernandes (PG)¹, Pedro Ivo da S. Maia (PG)¹, A. Hagenbach (PQ)², U. Abram (PQ)², Victor M. Deflon (PQ)^{1*}. *deflon@iqsc.usp.br

- 1 Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos (SP)
- 2 Institut für Chemie, Freie Universität Berlin, D-14195 Berlin / Germany

Palavras Chave: rênio(V), ditiocarbazato, tecnécio, química medicinal nuclear.

Introdução

A classe de ligantes dos ditiocarbazatos tem sido amplamente estudada nos últimos anos principalmente em função de biológicas tais como: agentes antitumorais, bactericidas, fungicidas e inseticidas entre outras.¹

Complexos metálicos com esta classe de ligantes têm despertado grande interesse na comunidade científica devido aos vários modos de coordenação possíveis, a estabilidade dos complexos formados e ao aumento da atividade dos complexos frente aos seus respectivos ligantes não complexados. Novos ditiocarbazatos tem sido sintetizados através da substituição de grupos orgânicos periféricos, o que possibilita um ajuste fino de suas propriedades. Estas modificações alteram tanto a capacidade doadora quanto as propriedades biológicas atribuídas a estes ligantes.²

Resultados e Discussão

Os complexos NBu₄[ReOCl₄] e [ReOBr₃(PPh₃)₂] foram utilizados como precursores metálicos. Benzoilacetilacetona-S-p-nitrobenzilditiocarbazato (H₂BDTCNO₂) Benzoilacetilacetona-Sе benzilditiocarbazato (H2BDTC) foram usados como agentes complexantes neste trabalho. complexos [ReO(BDTCNO₂)(HBDTCNO₂)] (1) e [ReO(BDTC)Br(PPh₃)] (2) foram obtidos, em CH₂Cl₂, a partir de uma reação com estequiometria (rênio : ditiocarbazato) 1:2 e 1:1 respectivamente. Os complexos cristalizaram-se sob a forma de prismas roxos e tiveram sua estrutura molecular determinada por difração de raios X em monocristal. IV, ³¹P-RMN e microanálises (CHN) também foram técnicas utilizadas para caracterização dos complexos obtidos.

	1	2
Sistema cristalino	Triclínico	Monoclínico
Grupo espacial	P-1	P2₁/n
Z	1	2
R ₁	0,084	0,0649

Tabela 1: Dados cristalográficos para os complexos.

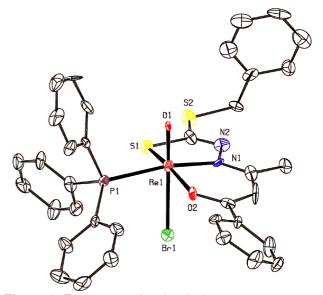


Figura 2. Estrutura molecular de 2.

Complexo	O-H	CS	Re=O
1		970	957
2		972	960
H ₂ BDTCNO ₂	3345	986	
H₂BDTC	3356	980	

Tabela 2: Dados de Infravermelho (cm⁻¹) para 1 e 2.

Conclusões

Em função da estabilidade dos complexos aqui apresentados, estes tornam-se candidatos em potencial para testes como novos modelos para o desenvolvimento de radiofármacos de tecnécio, trabalho este, que consiste na próxima etapa, dentro deste projeto de pesquisa.

Agradecimentos

FAPESP, CAPES (PROBRAL) e CNPq

Bera, P.; Kim, C.H.; Seok, S.; *Polyhedron.* **2008**, 27, 3433.
Crouse, K. A; Kar-Beng, C.; Tarafder, M. T. H.; Kasbollah, A.; Ali, A. M.; Yamin, B. M.; Fun, H. -K.; *Polyhedron.* **2004**, 23, 161.