Interação, em solventes orgânicos, de ânions com corantes protonados contendo um centro piridínico catiônico

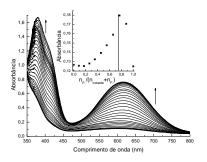
Lizandra M. Zimmermann-Dimer (PG), Vanderléia Gava Marini (PG), Vanderlei Gageiro Machado^{*} (PQ) gageiro@furb.br

Universidade Regional de Blumenau, FURB, Blumenau, SC, 89012-900.

Palavras Chave: quimiossensores cromogênicos, interações eletrostáticas, ânions, ligação de hidrogênio

Introdução

Dentre os avanços observados na área do desenvolvimento de quimiossensores aniônicos está o entendimento do tipo de interação que os quimiossensores analitos efetuam com os cromogênicos.1 Na literatura é comum a estequiometria do tipo 1:1 e 1:2.² No entanto, os efetuados usando-se merocianinas solvatocrômicas 1-3 na forma protonada apontaram uma estequiometria corante:ânion adicional, do tipo 1:3.3 As evidências surgiram a partir dos perfis de titulação, por meio do ajuste a modelos matemáticos.3 Foi evidenciado que corantes solvatocrômicos que apresentem uma carga eletrônica positiva em sua estrutura devida a um grupo metilpiridínico são suscetíveis para fazer interações corante:ânion 1:3 em solventes como clorofórmio e acetonitrila. Assim, foram realizados diversos estudos com os corantes 1-3 a fim de se confirmar a interferência do centro metilpiridínico na estequiometria destes processos em solução.


Resultados e Discussão

Foram feitas titulações dos compostos protonados 1-3 com fluoreto de tetra-n-butilamônio usando triclorometano e acetonitrila como solventes orgânicos. Um gráfico dos valores de absorbância em 622 nm para o composto 1 protonado (2,0×10⁻⁴ mol dm⁻³) em função da concentração de F apresentou um comportamento típico para uma estequiometria corante protonado: ânion 1:3. O ajuste dos dados experimentais levou a uma constante de ligação de (2,21±0,15)×10⁹ dm⁹ mol⁻³. Um gráfico de Job (ver inserto da Figura 1) confirmou a estequiometria. Titulações realizadas com o corante 2 (2,5×10⁻⁴ mol dm⁻³) protonado em triclorometano também revelou uma esteguiometria corante: F 1:3. A adição de 2% (v/v) de metanol ao triclorometano dificultou a interação do ânion com o centro piridínico e modificou o perfil da titulação, com duas novas estequiometrias obtidas: 1:1 e 1:2. Foram realizadas ainda em acetonitrila titulações de 3 protonado $(2,0\times10^{-5} \text{ mol dm}^{-3})$ com F⁻, na ausência e com excesso de l', uma vez que já é 32ª Reunião Anual da Sociedade Brasileira de Química

conhecido que este último ânion interage por transferência de carga com o grupo piridínico (**Tabela 1**). Foi verificado que a adição de l' modifica o perfil da titulação e que as estequiometrias corante:ânion mudam de 1:2 e 1:3 na ausência de l' para 1:2 na presença do l'.

Tabela 1. Constantes de ligação para as titulações com o composto $\bf 3$ protonado com $\bf F$, variando-se a concentração de $\bf \Gamma$.

Condições experimentais	$K_{12}/\mathrm{dm}^6\mathrm{mol}^{-2}$	$K_{13}/\mathrm{dm}^9\mathrm{mol}^{-3}$	S.D.
sem I	(2,35±1,56)×10 ⁷	$(1,24\pm0,92) \times 10^5$	4×10 ⁻⁵
1 equiv. de l	(2,07±0,42)×10 ⁸	(1,43±0,85) ×10 ⁴	2×10 ⁻⁴
6 equiv. de l	(3,51±0,27)×10 ⁹	-	9×10 ⁻⁴

Figura 1. Espectros de UV-vis do corante protonado 1 em acetonitrila a 25°C diante da adição de quantidades crescentes de F⁻. A concentração final do F⁻ foi 2,5×10⁻³ mol dm⁻³. Inserto: Gráfico de Job para o fluoreto com o corante protonado 1.

Conclusões

Com base nos resultados, apresentamos um modelo que justifica uma estequiometria 1:1 quando o corante for muito ácido e o ânion suficientemente básico para abstrair o próton. O surgimento da estequiometria 1:2 evidencia que o primeiro equivalente do ânion estabelece ligação de hidrogênio com o corante protonado. Por fim, casos de estequiometria 1:3 acontecem quando o primeiro equivalente do ânion complexa-se por interação eletrostática com o grupo piridínico.³

Agradecimentos

À Furb, FAPESC e ao CNPq.

¹Zimmermann-Dimer, L.M; Machado, V.G. *Quim. Nova* **2008**, *31*, 2134.

² Boiochhi, M. et al. J. Am. Chem.Soc. **2004**, 126, 16514.

³ Zimmermann-Dimer, L. M.; Machado, V. G. *Dyes Pigm.* **2009**, *no prelo*.

Interação, em solventes orgânicos, de espécies aniônicas com corantes protonados contendo um centro piridínico catiônico NÃO PREENCHER

Lizandra M. Zimmermann-Dimer (PG) Vanderléia G. Marini (PG), Vanderlei Gageiro Machado (PQ) gageiro @furb.br

Departamento de Química, Universidade Regional de Blumenau, FURB, Blumenau, SC, 89012-900.

Palavras Chave: quimiossensores cromogênicos, interações eletrostáticas, ânions, ligação de hidrogênio

Estudos efetuados para avaliar o tipo de interação de ânions com quimiossensores têm mostrado, geralmente, um tipo de associação do tipo 1:1 ou 1:2. No entanto, o uso de três merocianinas solvatocrômicas na forma protonada apontou uma estequiometria corante:ânion adicional, do tipo 1:3. As evidências surgiram a partir dos perfis de titulação, por meio do ajuste a modelos matemáticos. Foi evidenciado que corantes solvatocrômicos que apresentem uma carga eletrônica positiva em sua estrutura devida a um grupo metilpiridínico são suscetíveis para fazer interações corante:ânion 1:3 em solventes como triclorometano e acetonitrila. Experimentos com excesso de l' e com a adição de pequenas quantidades de metanol modificaram os perfis das titulações e as constantes de ligação devido à competição que o l' exerce na formação de um complexo de transferência de carga, e, no caso do metanol pela solvatação, dificultando a interação do analito aniônico com o grupo piridínico. (FURB, FAPESC, CNPq)