Estudo eletroquímico comparativo de ligas Ni-Cr e Co-Cr utilizadas em próteses sobre implantes dentários.

Klester Santos Souza* (IC), Ernandes Antônio Fernandes Júnior (IC), Arnaldo Rabêlo de Carvalho (PQ) e Silvia Maria Leite Agostinho (PQ). * klesters@hotmail.com

Departamento de Química Fundamental, CCEN, UFPE – Pernambuco. Departamento de Química Fundamental, IQ-USP – São Paulo.

Corrosão, Ligas dentárias Ni-Cr e Co-Cr, técnicas eletroquímicas, ambiente bucal.

Introdução

As primeiras técnicas de fundição, no inicio do século XX, aliadas aos trabalhos de pesquisa de Wilmer Solder¹, tornaram possível a utilização de componentes metálicos em ambiente bucal. Seguiuse uma larga comercialização de ligas à base de ouro para próteses dentárias, por apresentarem boa estabilidade termodinâmica. Este quadro se reverteu a partir da década de 80 devido ao alto custo dos metais nobres, levando à procura de materiais metálicos alternativos, as ligas passiváveis, entre as quais se destacam as de Ni-Cr e Co-Cr.²

Devido ao crescente emprego destas ligas, estudos têm sido realizados³⁻⁵ com a finalidade de verificar o comportamento das mesmas, em meios que simulem o ambiente bucal.

Neste trabalho se faz um estudo comparativo do comportamento eletroquímico de ligas Ni-Cr e Co-Cr (tabela 1), largamente utilizadas no Brasil. Foram realizadas medidas de potencial de circuito aberto e polarização potenciostática anódica.

Tabela 1 – Composição das ligas dentárias

Tipo	Liga	Composição
Ni-Cr	Α	Ni-56%; Cr-20%; Co-12%; Mo-5%; Ti-2%; Outros-5%
Ni-Cr	В	Ni-65%; Cr-22,5%; Mo-9,5%; Nb-1,0%; Si-1,0%; Outros-1,0%
Co-Cr	С	Co-59,4%; Cr-24,5%; W-10,0%; Nb-2,0%; V-2,0%; Si-1,0%; Mo-
		1,0%; Fe-0,1%
Co-Cr	D	Co-63,5%; Cr-30%; Mo-5%; Si-1%; Mn-0,2%, C-0,3%
Co-Cr	E	Co-63%: Cr-23%: Mo-7.3%: W-4.3%: Si-1.6%

Resultados e Discussão

Os estudos foram realizados em meio de NaCl $(0,15 \text{ mol.L}^{-1})$, à temperatura de (37 ± 1) ${}^{\circ}\text{C}$.


Foram levantadas curvas de potencial de circuito aberto em função do tempo e determinados os valores de potencial de corrosão, E_{corr} (valores de potencial de circuito aberto estacionário). O eletrodo de calomelano saturado foi usado como referência.

Na figura 1 são apresentadas as curvas de polarização anódica. Na tabela 2, são apresentados os valores de $E_{\text{corr.}}$ da corrente de passivação (I_{pas}), do potencial de elevação da corrente (E_{ec}) e da faixa de potencial em que o material se encontra passivado (FP).

Tabela 2 - Dados eletroquímicos

Liga	E _{corr} (mV)	E _{sc} (mV)	I _{pass} (μΑ/cm²)	FP (mV)
Α	- 290±9	- 183±18	2.0±0,5	107±14
В	- 141±29	145±20	0,5±0,3	286±25
С	- 75±23	75±5	$0,4\pm0,2$	150±14
D	- 156±16	42±36	0.5±0,2	198±44
Ε	- 93±34	82±29	0.5±0,2	175±32

Figura 01: Gráfico da polarização potenciostática anódica

Constatou-se que as ligas que contêm as menores concentrações de cromo e molibdênio, elementos responsáveis pela formação do óxido protetor^{2,5}, apresentaram pior desempenho.

Todos os materiais mostraram, na segunda curva de polarização após retorno espontâneo ao $E_{\rm corr}$, uma faixa passiva bem maior indicando que o filme formado após a polarização anódica apresentou melhores característica protetoras.

As amostras das ligas D e E foram reprodutíveis enquanto as ligas A e C se mostraram irreprodutíveis nas seguintes situações distintas: quando a mesma amostra era novamente lixada e polarizada, ou quando uma segunda amostra do mesmo lote era comparada com a primeira.

Conclusões

As ligas Co-Cr apresentaram comportamento comparável, o que não ocorreu com as ligas Ni-Cr.

As ligas apresentaram a seguinte ordem decrescente de resistência à corrosão: Liga B > Liga D > Liga E > Liga C > Liga A.

Ensaios eletroquímicos sobre ligas aplicadas em próteses dentárias devem ser estimulados no ambiente acadêmico, pois além do caráter científico representam também um trabalho de cunho social.

Agradecimentos

O estudante Ernandes Antônio Fernandes Júnior, agradece ao CNPq a bolsa PIBIC.

Anusavice, K.J. Phillips materiais dentários. 10.ed. Rio de Janeiro: Guanabara Kongan 1998

Ameer, M. A.; Khamis, E.; Al-Motlaq, M. Corrosion Science. 2004, 46,2825-2836.
Inada, E. Estudos eletroquímicos in vitro e in vivo da liga níquel-cromo-molibdêniotitânio aplicada em supra estrutura de implantes orais. 2005. 159 f. Dissertação (Mestrado em odontologia) Faculdade de Odontologia, Universidade de São Paulo.

⁴ Vieira, J.C. Estudo de interfases eletroquímicas envolvendo materiais dentários de uso odontológicos. 2006. 80 f. Dissertação (Mestrado em físico-química) Departamento de Química, Universidade de São Paulo.

⁵ Sharma, M.; Kumar, A. V. R. J. Mater. Sci., 2008;19:2647-2653.