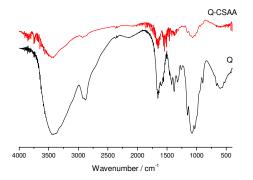
Modificação ambientalmente amigável de quitosana através de reação com dissulfeto de carbono e acrilamida.

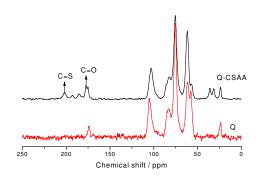
Adnan Khan*(PG)¹, Syed Badshah(PG), Claudio Airoldi(PQ)¹.

1 Instituto de Química, IQ, Universidade Estadual de Campinas, CEP 13083-970, Campinas-SP E-mail: adnan@iqm.unicamp.br.


Palavras Chave: Quitosana, modificação, adsorção.

Introdução

A quitosana é um biopolímero formado de unidades glucosamina. sendo obtida desacetilação da quitina¹. Pesquisas recentes mostram grande interesse na modificação da quitosana, devido à grande variedade de sua aplicação, como encapsulamento, utilizado para liberação de fármacos, suporte para imobilização de enzimas e como adsorvente para remoção de metais tóxicos de efluentes industriais². No presente trabalho a quitosana foi modificada com acrilamida (0.120 mol) que foi adicionada a uma mistura de dissulfeto de carbono (0.160 mol) e guitosana (0.20 mol). A reação prosseguiu a 60°C por 5 dias sob agitação magnética vigorosa. O produto foi filtrado, lavado com água e seco sob vácuo a 50ºC. O biomaterial modificado foi caracterizado por espectroscopia na região do infravermelho e RMN de 13C


Resultados e Discussão

O espectro infravermelho da quitosana apresenta bandas características em 2900 cm⁻¹ (estiramento C-H) e uma banda intensa e larga na região de 3400 cm⁻¹ que é atribuída às vibrações de estiramento dos grupos OH das hidroxilas e NH₂. A quitosana modificada apresentou bandas em 3438 cm⁻¹ relativa à vibração OH, com sobreposição da vibração do grupo amino na mesma região. A vibração C=O aparece em 1653 cm⁻¹ e a C=S ocorre em 1065 cm⁻¹ confirmando a modificação.

Figura 1. Espectros de IV da quitosana(Q) e quitosana modificada (Q-CSAA).

O espectro de ressonância magnética nuclear de ¹³C da quitosana modificada mostra claramente o aparecimento de deslocamentos químicos em 201 ppm, devido a presença de C=S e um pico em 175

ppm devido a presença do grupo C=O da amida.

Figura 2. Espectro de ressonância magnética nuclear de ¹³C da quitosana (Q) e quitosana modificada (Q-CSAA).

Conclusões

A investigação mostrou que a modificação da quitosana ocorreu com sucesso, como se observou através das caracterizações. Essa superfície modificada possui centros básicos e conseqüentemente pode ser utilizada para remover íons metálicos de solução aquosa.

Agradecimentos

¹, Guo, Z.; Xing, R,; Wanga, L,; Lia, p. *Carbohydr. Res.* 342 (**2007**) 1329.

², Chellapandian, M.; Krishan, M. R. V. *Biochemistry*, 33 (1998) 595.