Estudo teórico do efeito α -regiodiretor do grupo carboxilato na reação de aminas com oxiranas derivados do ácido glicídico.

Leandro Soter de Mariz e Miranda (PQ), 1 Rodrigo Octavio Mendonça Alves de Souza (PQ).2

1-Instituto Federal de Educação, Ciência e Tecnologia, Campus Maracanã, Rua Senador Furtado, 121, Maracanã - Rio de janeiro – RJ CEP:20270-021.

2-Instituto de Química, Universidade Federal de Rio de Janeiro, Campus Macaé, Rua Aluisio da Silva Gomes, 50 - Granja dos Cavaleiros – Macaé – Rio de Janeiro – Cep: 27.930-560.

Palavras Chave: ácido glicídico, epóxidos, aminoácidos

Introdução

Ésteres e amidas β-substituídos do ácido glicídico são importantes intermediários na síntese de β-amino-α-hidroxi-ácidos, onde a abertura nucleofílica do anel oxirana presente nestes intermediários ocorre com alta regiosseletividade em favor do carbono β.

Por outro lado, a utilização de derivados do ácido glicídico para a síntese de α -amino- β -hidroxiácidos, é muito menos frequente. 2 A inversão da regiosseletividade a favor do carbono α é relatada apenas com a utilização de aminas como nucleófilos e do carboxilato do derivado β -subistituído do ácido glicídico. 2

O presente trabalho relata resultados preliminares do estudo teórico do do efeito α -regiodiretor do grupo carboxilato na reação de aminas com oxiranas derivados do ácido glicídico.

Resultados e Discussão

Neste trabalho foi utilizado o pacote do Gaussian 03. Através deste, utilizamos a teoria do funcional da densidade no método B3LYP, com cálculos de otimização de geometria na base 6-31G* e "single-point" na base 6-311++G**. Foram calculadas a barreira de ativação, no vácuo, das reações de abertura nucleofílica, com amônia e metilamina, das posições α e β das oxiranas presentes nos carboxilatos β -substituídos dos ácidos trans-isopropil (1), trans-fenil (2), trans-metil (3) glicídicos, figura 1.

Os estados de transição (ET) calculados encontram-se na figura 2. A estrutura cíclica presente na figura decorre da suas geometrias otimizadas onde, observou-se, em todos os casos, uma distância entre a carboxila e o hidrogênio presente no nucleófilo característica da presença de uma ligação de hidrogênio. Com isso tornou-se necessário, para a metilamina, a

32ª Reunião Anual da Sociedade Brasileira de Química

análise da barreira de ativação para os estados de transição ET A e ET B para a reação na posição α .e ET C e ET D para a posição β .

Tabela1: Barreira de ativação (Kcal/mol) calculada para a reação entre **1- 3**com amônia e metilamina

	Amônia		Metilamina			
	isômero α	isômero β	isômero α		isômero β	
Substrato			ET A	ET B	ET C	ET D
1	20,5	22,8	26,4	29,8	29,9	30
2	19,5	20,7	22,8	26,4	27,6	27,8
3	20,5	20,6	27	30,1	27,6	28,2

Segundo os resultados apresentados na tabela 1, a barreira de ativação para ambos nucleófilos é menor para o regioisômero α nos casos dos glicidatos 1 e 2. No caso da metilamina, o ET A apresenta a menor barreira de ativação. Além disso, a diferença de energia entre os ETs regioisoméricos α e β variam de acordo com o substituinte dos glicidatos estudados, o que sugere interações desestabilizantes entre R_1 e metilamina, consequência da natureza ciclica destes ETs.

Conclusões

A barreira de ativação calculada sugrere uma α-regiosseletividade para os glicidatos 1 e 2 e baixa regiosseletividade para o glicidato 3. Estes resultados estão de acordo com a regiosseletividade relatada experimentalmente para estes substratos.²

Agradecimentos

FAPERJ

² Sharpless, KB; Chong, J M J. Org. Chem, **1995**, 50, 1563-1564

¹ Hashiyama, T.; Arakawa, H. Tetrahedron, **1999**, 55, 1005.