Acoplamentos Cruzados de Enol fosfatos Alifáticos Catalisados por Pd(0)

Daniel Lins de Sales (PG), Karla Ceodaro Pais (PG) e Alessandro B. C. Simas (PQ)* *e-mail: abcsimas@nppn.ufrj.br

Universidade Federal do Rio de Janeiro, Núcleo de Pesquisas de Produtos Naturais (NPPN), Laboratório Roderick A. Barnes, Ilha da Cidade Universitária, CCS, bloco H, Rio de Janeiro, RJ, 21941-590, Brasil.

Palavras Chave: Enolfosfato, Sonogashira, Stille, paládio, catálise.

Introdução

Os enol fosfatos podem ser considerados uma alternativa valiosa para seus análogos triflatos em de ACC (Acoplamento Cruzado reações Catalisado)¹. Apenas recentemente² surgiram os primeiros relatos sobre o uso de enolfosfatos alifáticos para a formação de ligações C-C via ACC, sendo um desses, proveniente dos esforços do nosso grupo.³ A seleção prévia de um enol fosfato (2c: Tabela 1) estável demandou um esforço substancial de experimentação.3 Relatamos aqui o uso de 2c em reações de ACC.

Tabela 1

Entrada	R ¹	R ²	Estabilidade	Produto
1	Bn	Boc	Muito Baixa	2a
2	Bn	Bz	Baixa	2b
3	PMP	Cbz	Boa	2c
4	PMP	Boc	Moderada	2d

Resultados e Discussão

Apesar da reação de Sonogashira⁴ entre **2c** e o acetileno 5a ter se mostrado viável (Tabela 2, entrada 1), não conseguimos ainda torná-la eficiente o bastante, apesar dos inúmeros esforços. Resolvemos, então, pré-ativar o co-participante eletrofílico por meio de estanilação. Os bons resultados dos ACC com os acetilenos 5b e 5c (Entradas 2, 3) sugerem um comprometimento da etapa de transmetalação na reação anterior. bons resultados em reações de Stille (Entrada 4) e Suzuki (Entrada 5) sugerem a possibilidade de um escopo amplo para as ACC envolvendo 2c.

Tabela 2

Ent.	M-R ³	Condições (i)	Rend.
1	H———Ph 5a	Pd(OAc) ₂ , PPh ₃ , ZnCl ₂ , THF/TEA (2:1) 24h	39%
2	Bu ₃ Sn——Ph 5b	Pd ₂ dba ₃ .CHCl ₃ , AsPh ₃ , DIPEA, NMP, 2h	65%
3	SnBu ₃ 5c	Pd ₂ dba ₃ .CHCl ₃ , AsPh ₃ , DIPEA, NMP, 2h	83%
4	Bu ₃ Sn———TMS 5d	Pd ₂ dba ₃ .CHCl ₃ , AsPh ₃ , DIPEA, NMP, 24h	46%
5	CH 	PdCl ₂ (PPh ₃) ₂ , Na ₂ CO ₃ , EtOH, THF, 80°C, 20 min	64%

Conclusões

Este estudo mostrou a viabilidade da síntese de eninos via acetilenos 1-estanilados. Produtos com este perfil funcional podem constituir interessantes blocos de síntese.

Agradecimentos

CNPq, FAPERJ, LASESB-NPPN, Central Analítica-NPPN e CNRMN-IBM/UFRJ.

¹ Occhiato, E. G. Mini-Reviews in Org. Chem. 2004, 01, 149.

² (a) Gillaizeau, I. et al. Synllett **2007**, 1925. (b) Fuwa & Sasaki, Org. Lett. 2007, 17, 3347. (a) Sales, D. L. Dissertação de Mestrado, NPPN-UFRJ, 2006.

⁽b) Sales, D. Lins; Simas, Á. B. C. 30° Reunião da SBq, 2007. (a) Sonogashira, K. J. Organometal. Chem 2002, 653, 46. (b) Negishi, E., Anastásia L. *Org. Lett.* **2001**, <u>3</u>, 3111.