Efeito dos Gases H₂ e He na Otimização da Interface de Colisão e Reação (CRI) em ICP-MS. Parte 1. Avaliação dos Efeitos para Arsênio

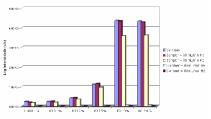
Catarinie D. Pereira (PG)¹, Fernando V. Silva (PQ)² e Joaquim A. Nóbrega (PQ)¹* email: djan@ufscar.br

- 1. Grupo de Análise Instrumental Aplicada, Universidade Federal de São Carlos, Departamento de Química, Rod. Washington Luiz km 235, São Carlos SP. 13565-905
- 2. Varian Indústria e Comércio Ltda, Av. Dr. Cardoso de Mello 1644, Vila Olímpia, São Paulo SP

Palavras Chave: Arsênio. Interferência poliatômica. ICP-MS. Interface CRI.

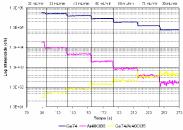
Introdução

A aplicação analítica da espectrometria de massas com plasma acoplado indutivamente (ICP-MS) é crescente devido aos novos desenvolvimentos instrumentais. A maioria das aplicações envolve analisadores de massa com quadrupolo. Esse tipo de espectrômetro apresenta maior transmissão de íons e menor custo instrumental, porém apresenta baixa resolução espectral que pode afetar a exatidão para elementos interferidos por espécies poliatômicas geradas no plasma. Visando eliminar esse problema foram desenvolvidos dispositivos com celas ou interfaces que promovam colisões e/ou reações em fase gasosa para garantir a resolução necessária à determinação. trabalho foi investigado o desempenho de uma interface de colisão e reação (CRI) para a determinação de arsênio por ICP-MS em amostras que contenham o íon cloreto na matriz.


Experimental

Os experimentos foram conduzidos em um ICP-MS Varian 820-MS dotado de uma interface de colisão e reação (CRI) e de um arranjo "double off-axis" em 90º para a extração e focalização dos íons. A interface de colisão e reação constitui-se de cones amostrador e skimmer modificados, que possibilitam a introdução dos gases H2 e/ou He diretamente na zona de expansão do plasma buscando promover reações e colisões com o interferente poliatômico ⁴⁰Ar³⁵Cl⁺, eliminando seu efeito sobre a medida do isótopo ⁷⁵As⁺. Diferentes concentrações de HCl, vazões de H₂/He e ponto de introdução dos gases foram avaliados na otimização da interface CRI. A dinâmica de avaliação envolveu o monitoramento do sinal na massa 75 para as soluções de As preparadas em concentrações crescentes de HCI, na presença e ausência dos gases H₂ e He.

Resultados e Discussão


Os efeitos decorrentes de processos colisionais e reacionais promovidos pelos gases introduzidos em

regiões sob distintas pressões e temperaturas podem ser observados nas Figuras 1 e 2.

Figura 1. Intensidade de sinal para as soluções do branco monitoradas na m/z 75 em função de concentrações variáveis de HCl, gás adicionado e ponto de adição, skimmer ou sampler.

Para monitorar isoladamente o efeito dos gases sobre o interferente ⁴⁰Ar³⁵Cl⁺ e analito ⁷⁵As⁺, foi utilizado o elemento ⁷⁴Ge, como indicador da sensibilidade para as espécies ⁷⁵As⁺. Redução significativa da sensibilidade para ⁷⁴Ge⁺, em conjunto com o sinal do interferente ⁴⁰Ar³⁵Cl⁺, indicaria a ineficiência do gás.

Figura 2. Efeito do fluxo de H_2 introduzido através do skimmer para 74 Ge $^+$ e 40 Ar 35 Cl $^+$.

Conclusões

Pode-se constatar que a introdução do gás através do skimmer é mais eficiente que através do sampler. Além disso, o uso de H₂ é mais efetivo que o uso de He, o que indica a predominância de processos reacionais para correção do efeito do interferente ⁴⁰Ar³⁵Cl⁺.

Agradecimentos

Este trabalho é financiado pela FAPESP (Projeto Temático 2006/59083-9). Os autores também agradecem ao apoio do CNPq e CAPES.