Síntese de 1-Phenyl -1H-Pirazóis em Líquido Iônico

Lilian Buriol (PG)¹, Clarissa P. Frizzo(PG)¹, Liziê D. T. Prola (IC)¹, Elisandra Scapin* (PQ)², Marcos A. P. Martins (PQ)¹, Nilo Zanatta (PQ)¹, Hélio G. Bonacorso (PQ)¹ *elisandra_scapin@yahoo.com.br*

Palavras Chave: enonas, fenil pirazóis, liquido iônico

Introdução

Os heterociclos, mais especificamente aqueles que apresentam núcleos pirazolínicos, apresentam atividades farmacológicas importantes antimicrobiana e anti-inflamatória. A rota sintética mais conhecida para a obtenção de pirazóis é a reação de ciclocondensação do tipo [3+2]. Os pesquisadores do NUQUIMHE vêm estudando a síntese de pirazós a partir de cetonas α,β insaturadas trialometiladas е hidrazinas. Particularmente, poucas reações a partir ciclocondensação envolvendo fenilhidrazina descritas na literatura². Além disso, o uso de líquidos iônicos (ionic liquids-ILs) em reações orgânicas tem demonstrado que estes podem atuar como solventes e catalisadores, mudando o produto de e/ou diminuindo o tempo de reação3. Assim, o objetivo deste trabalho é mostrar o uso do ILs para a obtenção de pirazóis com alta regiosseletividade através da reação de ciclocondensação entre α , β -insaturadas cetonas trialometiladas fenilhidrazina.

Resultados e Discussão

O IL utilizado foi o tetrafluorborato de 1-metil-3-butilimidazol [BMIM][BF₄] sintetizado de acordo com metodologia descrita na literatura.⁴

 $R^1 = Me$, Iso-Butil, Butil, Ph, 4-Me-Ph, Tiofe-2-il, 4-Cl-Ph, 4-F-Ph, fura-2-il.

 $I = [BMIM][BF_4], T.A.-150°C, 15min-3h.$

Esquema 1.

A proporção dos reagentes foi 1(1a-i):1,2 (2):1 (IL). As demais condições reacionais estão relatadas na **Tabela 1**. Os produtos foram identificados por Espectroscopia de Massas, Espectrometria ¹H e ¹³C.

Tabela 1. Condições reacionais para a obtenção de N-Ph pirazóis triahalometilados.

	R ¹	Temp. (°C)	Tempo (min)	Rend. (%) ^a
3a	Me	T.A.	15	90
3b	Iso-Butil	T.A.	60	90
3c	Butil	T.A.	30	90
3d	Ph	T.A.	60	82
3e	4-Me-Ph	T.A.	30	83
3f	Tiofen-2-il	150	180	86
3g	4-CI-Ph	150	180	82
3i	Fur-2-il	150	180	72

^a Rendimento do produto isolado.

De acordo com a **Tabela 1**, é possível observar que as condições reacionais utilizadas permitiram a obtenção dos produtos com alta regiosseletividade. Estes resultados são melhores que os já descritos para esta reação, considerando que em condições convencionais (refluxo de EtOH, 4h), a fenilhidrazina reage originando N-Ph diidropirazóis 5 . Por outro lado, em micro-ondas, são obtidos didiidropirazóis ou pirazóis, dependendo das condições usadas, além disso, apenas α , β -insaturadas trialometiladas alguil substituídas foram estudadas 2 .

Conclusões

Em resumo, a reação entre cetonas α,β -insaturadas trialometiladas e fenilhidrazina em ILs forneceu N-Ph pirazóis com alta regiosseletividade, em tempos reacionais curtos e com bons rendimentos.

Agradecimentos

Aos financiamentos do CNPq, CAPES, FAPERGS e FATEC.

- Souza, F. R; Souza, V. T.; Ratzlaff, V.; Borges, L. P.; Oliveira, M. R.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P., Mello, C. F. Eur. J.Pharmacol. 2002, 451, 141.
 Martins, M.A.P.; Pereira, C.M.P.; Moura, S.; Frizzo, C.P.; Beck, P.;
- ² Martins, M.A.P.; Pereira, C.M.P.; Moura, S.; Frizzo, C.P.; Beck, P.; Zanatta,N; Bonacorso, H. G.; Flores, A.F.C. *J. Heterocycl. Chem.* 2007, 44, 1195.
- ³Martins M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N., Bonacorso H. G.; *Chem. Rev.* **2008**, *108*, 2015.
- ⁴ Souza, R.; Suarez, P. A. Z.; Consorti, C. S.; Dupont, J. Org. Synth. 2002, 79, 236.
- 5 Braibante, M. E.F; Clar, G.; Martins, M.A.P. *J. Heterocycl. Chem.* 1993, 30, 1159.

¹Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria RS Brasil.

²Laboratório de Química, Coordenação de Engenharia Ambiental, Universidade Federal do Tocantins, Campus Universitário, Av. NS 15 ALC NO 14, Bloco II,109 Norte, Palmas, TO