Preparação, caracterização e avaliação da retenção de voláteis da Lippia gracilis complexados em hidroxipropil-b-ciclodextrina.

Ricardo N. Marreto¹(PQ), Adriano Antunes S. Araújo¹(PQ), Rogéria S. Nunes¹(PQ), Elis Cristiane V. Almeida (IC), Arie F. Blank (PQ), Charlene Regina S. Matos (PG), Edenilson dos Santos Niculau³(IC)*, Péricles B. Alves ³(PQ).

Introdução

A microencapsulação de óleos essenciais em ciclodextrinas tem sido alvo de estudos com a finalidade de proteger componentes voláteis da oxidação, degradação pelo calor e evaporação^{1,2}. Neste trabalho foram preparados complexos de inclusão do óleo essencial da Lippia gracilis (OELG) hidroxipropil-β-ciclodextrina (HPβCD). métodos foram utilizados: mistura física (MF), dispersão em fase aquosa (DFA) e formação de pasta (FP). A caracterização das amostras foi realizada por análise térmica diferencial (DTA), termogravimetria (TG) e cromatografia gasosa acoplada à espectrometria de massas (CG/MS).

Resultados e Discussão

Os resultados de TG do OELG, HPBCD e dos complexos obtidos são mostrados na Tab. 1. De acordo com esses dados verifica-se que a maior fração (86.48%) do OELG evapora até 130°C. Nesta temperatura a HPBCD perde aproximadamente 12% de água. Sua decomposição térmica acontece por volta de 275°C. Perdas de massa nas faixas de temperatura entre 130-230 e 230-275°C foram caracterizados como evaporação do OELG adsorvido e incorporado na cavidade da HPBCD, respectivamente. De acordo com esses resultados pode-se verificar que o método da pasta apresentou maior percentual do OELG retido.

Tabela 1. Avaliação da perda de massa por TG para os complexos obtidos por diferentes métodos.

	Perda de massa % (±D.P.)		
Amostra	25-130°C	130-230°C	230-275°C
OELG	86,48	-	-
HPβCD	11,70	-	-
MF	10,47 (0.79)	2,77 (0.67)	-
DFA	9,48 (0.26)	3,93 (0.22)	0,81
FP	9,08 (0.63)	6,01 (0.06)	4,44

Esses dados foram corroborados pela análise em equipamento de Karl Fischer que mostrou os seguintes percentuais de água para as amostras: OELG (1,48%), HPβCD (12,49%), MF (10,44%),

31ª Reunião Anual da Sociedade Brasileira de Química

DFA (8,41%) e FP (8,40%). As curvas DTA do OELG, HPβCD e dos complexos são mostrados na Fig. 1. Esses curvas confirmam os dados obtidos por TG, mostrando picos endotérmicos na faixa de temperatura entre 130 e 275°C.

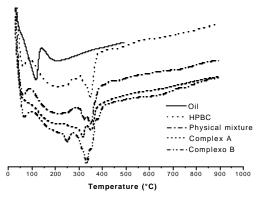


Figura 1. Curva DTA dos complexos do OELG com HPβCD preparadas por diferentes métodos.

A caracterização dos complexos envolveu a análise do OELG original, o percentual adsorvido na superfície e o óleo total extraído dos mesmos. 27 compostos foram identificados representando 99,24% do OELP. Os compostos predominantes foram carvacrol (23,52%), p-cimeno (15,82%), γ terpineno (14,17%) e mentol (10,97%). Os dados do complexo obtido pelo método DFA mostrou que 12 compostos foram totalmente complexados, e dois parcialmente. Para o método B oito foram complexados totalmente e quatro parcialmente.

Conclusões

Os resultados de TG/DTA e CG/MS comprovaram a formação do complexo de inclusão do OELG com HPβCD. Diferença entre a retenção de óleos por diferentes métodos foi observado.

Agradecimentos

CNPq (RENOBIO), PIBIC-CNPq e a FAPITEC/SE.

¹Martins, A.P., Craveiro, A.A., Machado, M.I.L., Raffin, F.N., Moura, T.F., Novák, C., Éhen, Z. Journal of Thermal Analysis and Calorimetry, 2007, 2, 363-371.

Padukka, I., Bhandari, B., D'Arcy, B. 2000. Journal of Food Composition and Analysis, 13, 59-70.

¹Departamento de Fisiologia da Universidade Federal de Sergipe-UFS, ² Departamento de Engenharia Agronômica - UFS

³ Departamento de Química da Universidade Federal de Sergipe-UFS - email: <u>edenilsonnicolau@hotmail.com</u> Palavras Chave: Lippia gracilis, complexo de inclusão, análise térmica, ciclodextrina, CG-MS.