Composição quimica do óleo essencial das folhas e inflorescências de *Ocimum basilicum* cultivados em Lavras-MG.

Luciana Domiciano Silva Rosado¹ (PG), José Eduardo Brasil P. Pinto¹(PQ), Arie F. Blank²(PQ), Edenilson dos Santos Niculau³ (IC), Péricles Barreto Alves³ (PQ)*

- 1) Departamento de Agricultura Universidade Federal de Lavras- UFLA.
- 2) Departamento de Engenharia Agronômica Universidade Federal de Sergipe-UFS
- 3) METABIO (Grupo de Pesquisa Metabólitos Secundários Bioativos)- UFS- Av. Mal. Rondon S/N, email: pericles@ufs.br

Palavras Chave: Ocimum basilicum, voláteis, CG-EM, linalol.

Introdução

O manjericão (Ocimum basilicum L.) pode ser considerado cultura anual ou perene, dependendo do local em que o mesmo é cultivado. Assim como em outros países do mundo esta planta vem sendo utilizada para diversos fins: erva culinária, inseticida, antiparasitário, repelente de insetos, e como insumo para a indústria de perfumaria e cosmético¹. A nomenclatura do gênero Ocimum da família Lamiaceae, da qual o manjericão está incluído é muito variada, mais de sessenta variedades são conhecidas, sendo desta forma questionável a sua verdadeira identidade botânica. A dificuldade em se classificar o manjericão se deve a ocorrência de polinizações cruzadas facilitando hibridações. resultando em um grande número de subespécies, variedades e formas.

O óleo essencial para comercialização pode ser extraído das folhas e ápices com as inflorescências. O presente trabalho teve como objetivo a comparação do óleo essencial obtido através de hidrodestilação em aparelho do tipo Clevenger das folhas e inflorescências de manjericão da cultivar Maria Bonita cultivado no Campus da Universidade Federal de Lavras sul de Minas Gerais.

Resultados e Discussão

A extração do óleo essencial das folhas e inflorescências foi realizada em aparelho do tipo Clevenger em duas horas com um teor de 1,35% e 0,16% respectivamente.

As análises dos óleos foram realizadas em cromatógrafo gasoso (Shimadzu GC-17 A equipado com detector de ionização de chamas (FID) e por um espectrômetro de massas (Shimadzu – GC-MS - QP5050A), utilizando uma coluna capilar DB-5MS. Nas análises tanto por GC-FID como GC-MS foram utilizadas idênticas condições cromatográficas. A identificação dos constituintes foram utilizadas duas bibliotecas do equipamento NIST107, NIST21. O índice de retenção foi obtido através da co-injeção hidrocarbonetos padrões (nC9 – nC18) e comparação com os dados da literatura².

A composição química dos constituintes voláteis das folhas e inflorescência é mostrada na tabela 1.

Tabela 1- Composição química dos constituintes voláteis das folhas e inflorescência de *O. basilicum*

I.Rª	Componente s ^b	Folhas	Inflorescência
		(%)	(%)
1031	1,8-Cineol	1.23	-
1099	Linalol	78.03	66.75
1195	α -Terpineol	0.73	0.51
1251	Geraniol	15.68	22.53
1268	Geranial	-	0.37
1285	Acetato de isobornila	-	0.07
1377	Acetato de geranila	1.44	-
1388	β-Elemeno	-	0.21
1419	β-Cariofileno	-	0.23
1432	α-trans-Bergamoteno	0.66	1.97
1480	γ-Muuroleno	-	1.10
1512	γ-Cadineno	0.32	0.59
1549	Elemol	-	0.13
1615	1,10-di-epicubenol	-	0.42
1641	epi-α-Cadinol	1.14	4.49

- a) Índice de retenção calculados aplicando a equação de van den Dool e Krats
- b) Compostos listados em ordem crescente de eluição em coluna DB-5MS

Conclusões

Estes resultados sugerem que a implantação de uma cultura do manjericão para a obtenção do óleo essencial pode ser promissora para os agricultores da região Sudeste, tendo em vista o teor de linalol que é o constituinte principal de maior valor no mercado internacional.

Agradecimentos

PIBIC/CNPq/UFS/UFLA/FAPEMIG

¹Lorenzi, H. e Matos, F.J.A. Plantas medicinais no Brasil: nativas e exóticas cultivadas. **2002.** Nova Odessa: Plantarum,

² Adams, R.P., Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4Th Edition, 2007, Allured Publishing Co. 804p

Sociedade Brasileira de Química (SBQ)