Formação Inesperada de 2-Aril-3-benzil-1,3-tiazolidin-4-onas

Victor Facchinetti (IC),^{1,2} Walcimar T. Vellasco Jr (IC),^{1,2} Marcele Moreth (IC),^{1,2} Claudia R. B. Gomes (PQ),¹ Wilson Cunico (PQ)^{1*}

- 1. Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos.
- 2. Universidade Federal Fluminense. Faculdade de Farmácia.

*wjcunico@far.fiocruz.br

Palavras Chave: tiazolidinonas, microondas, heterociclos.

Introdução

Tiazolidinonas são compostos heterocíclicos que têm grande importância na área da química medicinal (atividade antiviral, anticonvulsivante, tuberculostatica, antiinflamatória entre outras). A principal rota sintética para obtenção de tiazolidinonas é a ciclocondensação de três componentes em uma única etapa: uma amina, um aldeído e o ácido mercaptoacético. 1

Neste trabalho, visamos a síntese de uma série de tiazolidinonas tipo 1, intermediários na síntese de inibidores da protease do HIV, porém as moléculas 1 não foram obtidas, mas sim as moléculas do tipo 3.

Resultados e Discussão

A mistura de L-valina, dois equivalentes dos arenaldeídos **2a-k**, e diisopropiletilamina (DIPEA) em tolueno, foram refluxados por 4h em aparelhagem de Dean-Stark. O Ácido mercaptoacético foi, então, adicionado e a mistura reacional foi aquecida ate o término da reação.²

As moléculas **3a-k**, também foram obtidas quando todos os reagentes foram adicionados simultaneamente (reação *one-pot*) em tolueno e a mistura reacional aquecida por 16h. Os compostos **3b-d**, **3g**, **3j** e **3k**, foram obtidos alternativamente quando os respectivos arenaldeidos com a L-valina e excesso de ácido mercaptoacético em acetato de etila foram aquecidos em forno de microondas doméstico adaptado para laboratório (Esquema 1), sendo que os derivados nitro (**3b-d**) apresentaram excelentes rendimentos.³

Todas as reações foram acompanhadas por cromatografia gasosa (CG). As moléculas obtidas foram purificadas por cromatografia em coluna e foram caracterizadas por RMN de ¹H e ¹³C e por Raio X

Esquema 1: (*i*) DIPEA, tolueno, 4h, 130°C; (*ii*) HSCH₂COOH, 1h, 130°C. (*iii*) HSCH₂COOH, MW, 45W, EtOAc, 6 minutos.

Tabela 1: Rendimento e pontos de fusão para

			Convencional	Microondas
Produto	R	$p.f.^a(^{\circ}C)$	Rend ^b .	Rend ^b .
			(%)	(%)
3a	H	145-148	61	_
3b	$2-NO_2$	174-176	65	88
3c	$3-NO_2$	171-173	62	81
3d	$4-NO_2$	141-143	59	90
3e	2-F	81-83	58	_
3f	3-F	86-88	61	_
3g	4-F	88-90	60	61
3h	2-OMe	103-105	61	_
3i	3-OMe	97-99	65	_
3j	4-OMe	85-87	62	32
3k	4-CN	194-196	48	70

formação dos compostos 3a-k.

a – Pontos de fusão não corrigidos

b – Rendimento dos compostos isolados

Conclusões

Tanto o método convencional quanto o método utilizando radiação de microondas apresentaram rendimentos satisfatórios, sendo que o ultimo apresentou, em alguns casos, rendimento superior. O potencial bactericida destas moléculas está em investigação.

Agradecimentos

Farmanguinhos, Fiocruz, FAPERJ.

1Stenberg, V.I.; Singh, S.P.; Parmar, S.S.; Stenberg, V. I. Chem. Rev. 1981, 81, 175.

²Cunico, W.; Capri, L.R.; Gomes, C.R.B.; Sizilio, R.H.; Wardell, S. M. S. V. *Synthesis* **2006**, 3405.

Sociedade Brasileira de Química (SBQ)

³ Cunico, W.; Vellasco Junior, W.T.; Moreth,. M.; Gomes, C.R.B.

Lett. Org. Chem. 2008, aceito para publicação