Óleos essenciais de folhas, ramos finos, galhos, cascas e frutos de Croton palanostigma Klotzch.

Davi do Socorro B. Brasil^{1*} (PG), Adolpho Henrique Muller¹ (PQ), Giselle Maria S.P. Guilhon¹ (PQ) Cláudio Nahum Alves¹ (PQ), Eloísa Helena A. Andrade² (PQ), Joyce Kelly R. da Silva¹ (PG), José Guilherme S. Maia² davibb@ufpa.br

Palavras Chave: Croton palanostigma, Euphorbiaceae, óleos essenciais, a-pineno, limoneno, linalol, metileugenol sesquiterpenos hidrocarbonetos e oxigenados e

fenilpropanóides (tabela 1).

Introdução

O gênero Croton (Euphorbiaceae) é constituído por espécies de hábito arbustivo e arbóreo, sendo poucas de porte herbáceo. A maioria das suas espécies está distribuída na América do Sul e Antilhas, com expressiva ocorrência na Amazônia. Croton palanostigma é conhecido como "sangue-dedragão", 'balsa-rana" ou "mameleiro", com ocorrência no Norte do Brasil, nos estados de Roraima, Amazonas, Acre, Pará e Rondônia. Na medicina popular é usado na cicatrização de ferimentos e inflamações¹. Estudos anteriores reportam a presença de substâncias com atividades antioxidante e citotóxicas. A lignana dihidrobenzofurânica 3',4-Odimetilcedrusina isolada do látex e o próprio látex apresentaram alta atividade de inibição de células proliferativas umbilicais e gastrintestinais humanas, respectivamente, sugerindo ser uma fonte potencial de agentes anticâncer 2,3.

O objetivo do trabalho foi analisar a composição de voláteis das folhas, ramos finos, galhos, cascas e Croton palanostigma Klotzch, frutos de espécimen coletado no município de Terra Alta, PA, obtidos por hidrodestilação usando-se sistema de vidro tipo Clevenger, por 3 horas. A análise dos óleos foi feita por CG (Thermo Focus) e CG-EM (Thermo DSQ-II Focus) nas seguintes condições de operação: coluna capilar de sílica DB-5ms (30m x 0,25mm d.i.; 0,25µm de espessura do filme), gás de arraste: hélio, numa velocidade linear de 32cm/s a 100°C; temperatura do injetor: 250°C, programa de temperatura: 60-240°C (3°C/min). A identificação dos componentes voláteis foi feita por comparação dos seus espectros de massas e índices de retenção (IR) com aqueles registrados nas bibliotecas do sistema de dados e com o auxílio da literatura.

Resultados e Discussão

O rendimento dos óleos apresentou-se da seguinte maneira: folhas, 0,7%; ramos finos, 0,6%; galhos, 0,3%; casca, 2,2%; e fruto, 0,5%. Os principais componentes identificados foram monoterpenos hidrocarbonetos e oxigenados,

Tabela 1. Principais componentes dos óleos essenciais de *C. palanostigma*.

I.R	Compostos	F*	RF*	G*	C*	FR*
939	a-pineno	1,3	44,2	11	31,6	2,9
975	sabineno	0,8		3,4	1,0	0,2
980	ß-pineno		15,9	0,1	2,3	1,7
1017	α -terpineno		2,5	0,1		
1025	<i>p</i> -cimeno		4,0	0,5		
1029	limoneno		24,7	4,0	1,6	
1032	1,8-cineol	2,4				3,1
1097	linalol	25,4	0,4	3,4	1,1	43,0
1338	d-elemeno	2,0	0,1	0,6		3,1
1391	ß-elemeno	6,0	tr	2,8	1,1	6,4
1404	metileugenol	17,2	0,3	23,8	25,6	16,0
1419	ß-cariofileno	21,0	0,1	8,3	0,8	3,8
1435	trans-a-bergamoteno	2,9	0,1	3,7	1,9	1,7
1455	a-humuleno	3,1	0,1	1,7	0,4	0,8
1492	(<i>E</i>)-	tr		15,0	23,7	
	metilisoeugenol					
1500	biciclogermacreno	4,2				4,7
1557	elemicina	0,9		1,4	0,3	1,4
1654	a-cadinol	1,3		2,1	2,9	1,2
Total da composição (%)		88,5	92,4	81,9	94,3	90,0

^{*}F = folhas; RF= ramos finos; G = galhos; C = cascas; FR = frutos.

Conclusões

A composição de voláteis de folhas e frutos são assemelhadas, excetuando-se o percentual de β -cariofileno. O mesmo se observa para galhos e cascas, com exceção da variação do α -pineno. A composição dos ramos finos é diferenciada, com um teor elevado de limoneno, que nas outras amostras ocorre com pequenas quantidades.

Agradecimentos

Ao Programa de Biodiversidade (PPBio) do MCT.

31ª Reunião Anual da Sociedade Brasileira de Química

¹ Programa de pós-graduação em Química, Universidade Federal do Pará, Belém, PA

² Faculdade de Engenharia Química, Universidade Federal do Pará, Belém, PA

Sociedade Brasileira de Química (SBQ)

¹ MILLER, M. J. S. et al. J. Inflammation **2007**, 4. No pp. given. ² PIETERS, L. et al. J. Nat. Prod. **1993**, 56(6): 899-906. ³ SANDOVAL, M. et al. J. ethnopharmacology, **2002**, 80(2-3), 121-129.