AVALIAÇÃO DA MOBILIDADE DE METAIS TRAÇO EM SEDIMENTOS USANDO EXTRAÇÃO SEQUENCIAL

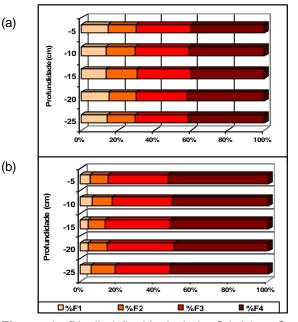
Elisangela de Andrade Passos¹(PG)*, Carlos Alexandre Borges Garcia² (PQ), José do Patrocínio Hora Alves² (PQ) e Antonio Celso Spínola Costa¹ (PQ) <u>*elisapassos@ufs.br</u>

Palavras Chave: Mobilidade, metais traço, sedimento, extração seqüencial.

Introdução

extração següencial é uma ferramenta importante, pois fornece informações da mobilidade, biodisponibilidade e toxicidade potencial de metais traço no ambiente. A maioria dos procedimentos de extração envolve a separação química do metal nas frações: trocável, redutível, oxidável e residual. O procedimento BCR otimizado é atualmente o mais vantajoso por ser harmonizado, validado e com disponibilidade de materiais de referência. possibilitando a comparação direta entre diferentes estudos 1,2.

Este trabalho apresenta a distribuição vertical da mobilidade de Cd, Cr, Cu, Ni, Pb e Zn em um *core* de sedimento do estuário do rio do Sal/SE, aplicando o procedimento BCR otimizado³ proposto pela *Community Bureau of Reference*.


Resultados e Discussão

Foi tomado um *core* de 25cm do sedimento do rio do Sal – Sergipe, na região impactada por despejos urbanos e industriais. O core foi seccionado em intervalos de 5cm e cada subamostra foi tratada pelo método de extração seqüencial BCR otimizado³. As determinações da concentração dos metais nos extratos foram feitas por FAAS e/ou FGAAS. Para o controle da eficiência do método empregado foi analisada juntamente com as amostras de sedimento o Material Padrão Certificado BCR 701. Os resultados demonstraram uma taxa de recuperação calculada em cada etapa do procedimento para os seis elementos variando entre 85% e 117%.

Cada fração representa a forma de associação dos metais ao sedimento. Os metais extraídos na primeira fração (F1) correspondem àqueles adsorvidos fracamente e ligados a carbonatos; na segunda (F2) estão aqueles associados aos óxidos de Fe e Mn; na terceira (F3) aos sulfetos e matéria orgânica e na quarta (F4) os quimicamente estáveis e biologicamente inativos^{1,2}.

De um modo geral, os metais fracionados de cada subamostra do *core* apresentaram um comportamento similar. A % extraída de cada elemento nas frações menos inertes (F1+F2+F3) 31ª Reunião Anual da Sociedade Brasileira de Química

foram: 59,0±0,9% para Cd; 55,0±1,8% para Ni; 53,9±0,9% para Cu; 53,6±1,37 para Pb; 51,9±1,1% para Zn, e 48,4±1,2 para o Cr. Portanto a mobilidade desses metais segue а seguinte Cd>Ni>Cu>Pb>Zn>Cr. O Cd foi o elemento traco que apresentou maior % nas fracões lábeis. principalmente na F3, mostrando que matéria orgânica e sulfetos são importantes fxadores de Cd sedimentos (Fig.1a). O Cr encontra-se, preferencialmente, associado à fração residual (F4) e, portanto, menos móvel em cada segmento do core estudado (Fig.1b). Fatos semelhantes vêm sendo observados em resultados encontrados na literatura1-

Figura 1. Distribuição Vertical de Cd (a) e Cr (b) removidos em cada etapa da extração seqüencial.

Conclusões

Em todas as subamostras do *core* estudado, a mobilidade dos metais seguiu a seguinte ordem Cd>Ni>Cu>Pb>Zn>Cr.

Agradecimentos

A CAPES pela bolsa concedida.

¹Grupo de Pesquisa em Química Analítica, Instituto de Química da Universidade Federal da Bahia.

²Laboratório de Química Analítica Ambiental da Universidade Federal de Sergipe.

Sociedade Brasileira de Química (SBQ)

Filgueiras et al., J. Environ. Monit., 2002, 4, 832.
Bacon et al., Analyst, in press.
Cuang, D. T.; Obbard, J.P. Applied Geochemistry, 2006, 21, 1335.