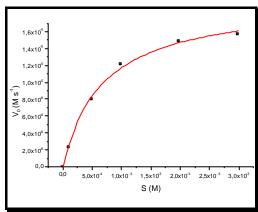
Enzima artificial a partir de polietilenoimina derivatizada

Juan Ricardo¹ (PG)*, Rosane Kolling¹ (PG), José Carlos Gesser¹ (PQ), Josiel Barbosa Domingos¹ (PQ).

1 Departamento de Química. Universidade Federal de Santa Catarina. Florianópolis. Santa Catarina. *juan@gmc.ufsc.br

Palavras Chave: synzymes, PEI, funcionalização.

Introdução


Algumas enzimas artificiais têm sido construídas a partir de polietilenoimina (PEI). A PEI quando derivatizada tem tido resultados impressionantes. A capacidade de complexação e catálise de ésteres de *p*-nitrofenila são comparáveis a enzimas naturais, principalmente quando derivatizada com grupos hidrofóbicos como o dodecil.

Resultados e Discussão

Para a obtenção de polietilenoimina derivatizada com grupos dodecilas, foi utilizado o método de funcionalização combinatorial¹ usando como reagente dodecilante o brometo de dodecila gerando uma biblioteca com diferentes relações estequiométricas. Esses polímeros foram testados, usando métodos cinéticos, para detectar as mais eficientes na hidrólise de acetato de *p*-nitrofenila (pNPA) gerando *p*-nitrofenol em tampão TRIS 50 mM em pH próximo de 7,40 a uma temperatura de 35°C e acompanhada na região de 404 nm.

O polímero selecionado como mais eficiente foi o **1.A9** contendo 1,2 equivalentes de brometo de dodecila com uma constante de velocidade de 1,2x10⁻⁴ s⁻¹, enquanto que para o PEI não derivatizada a velocidade observada foi de 3,38x10⁻⁵ s⁻¹, considerando que a velocidade de hidrólise do acetato de *p*-nitrofenila em meio aquoso e na ausência de PEI é ainda menor: 1,5 x 10⁻⁷ s⁻¹.

O polímero 1.A9 foi testado segundo o modelo de Michaelis-Menten onde a enzima sofre saturação do substrato a partir de uma concentração limite. Na Figura 1 é observado esse comportamento para a enzima artificial aqui estudada. A curva foi ajustada segundo a equação de Michaelis-Menten. A partir o ajuste do gráfico foram obtidos os parâmetros cinéticos: K_M , k_{cat} e k_{cat} / K_M . A constante de Michaelis, K_{M} , foi de 6,80 x 10⁻⁴ M, o k_{cat} de 25,00 s¹ e a constante de especificidade, k_{cat}/K_M , foi de 36764,70 M⁻¹ s⁻¹. Para comparação, na Tabela 1 são mostrados parâmetros cinéticos obtidos da hidrolise de pNPA também pela α-quimotripsina. A constante de Michaelis indica que 1.A9 possui uma constante de associação muito mais eficiente do que a própria αquimotripsina para o pNPA. Na etapa de catálise, k_{cab}, a eficiência da enzima artificial se mostra novamente mais significativa comparativamente.

Figura 1. Velocidade inicial em função da concentração de pNPA para a reação de hidrólise promovida pela enzima artificial.

E **1.A9** se mostrou até mesmo mais específico para o pNPA que a enzima natural, com um valor de k_{cal}/K_M maior, mostrando a eficiência da enzima artificial comparada a uma enzima natural para a hidrólise de pNPA.

Tabela 1. Comparação dos parâmetros cinéticos.

Enzima	K _M (mM)	k _{cat} (s ⁻¹)	K_{cat}/K_{M} (10 ³ M ⁻¹ s ⁻¹)
a- quimotrip- sina*	1,12	3,96	3,53
1.A9**	0,68	25,00	36,76

*Força iônica 0,1 M; Tampão TRIS-HCl; 25 °C. **Tampão TRIS-HCl; 35°C.

Conclusões

A constante cinética de hidrólise de pNPA por **1.A9** foi de $1,2x10^{-4}$ s⁻¹ cerca de 800 vezes maior que para a hidrólise em meio aquoso. Os parâmetros cinéticos foram determinados segundo a equação de Michaelis-Menten e se mostraram mais eficientes que para a enzima natural, α -quimotripsina.

Agradecimentos

CAPES, UFSC e LACBIO.

1) Hollfelder, F.; Kirby, A. e Tawfik, D. J. Org. Chem. 2001, 66, 5866