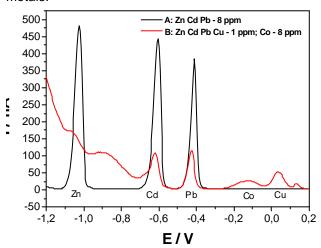
Determinação de Cu, Pb, Cd, Zn e Co utilizando microeletrodos de fibra de carbono modificados com filme de mercúrio.

Alexsandro M. Zimer¹ (PG), Paola D. Marreto¹ (PG), Sherlan G. Lemos¹ (PQ), Adriane V. Rosário¹ (PQ), Ernesto C. Pereira^{1*} (PQ), Lucia H. Mascaro¹ (PQ) e Ronaldo C. Faria² (PQ)*decp@power.ufscar.br

¹NANOFAEL - LIEC - CMDMC, ²Laboratório de Ambiental, Bioanalítica e Eletroanalítica – LABIE, Universidade Federal de São Carlos – UFSCar. C.P. 676, 13.565-90, São Carlos, SP.

Palavras Chave: fibra de carbono, microeletrodos, análises simultâneas.


Introdução

O uso de microeletrodos tem promovido uma expressiva ampliação dos limites experimentais de técnicas eletroanalíticas¹. Neste sentido o objetivo do trabalho é desenvolver uma metodologia para uma determinação simultânea de Cu, Pb, Cd, Zn e Co em soluções padrões, utilizando microeletrodos através de técnicas eletroquímicas.

Resultados e Discussão

Os microeletrodos foram construídos com fibra de carbono ($\phi = 50 \,\mu\text{m}$), as quais foram embutidas em tubo de vidro e seladas com resina de poliéster. A superfície dos eletrodos foi modificada pela deposição de um filme de mercúrio. O filme foi depositado potenciostáticamente em -1,2 V (vs. Ag/AgCl) por 300 s a partir de uma solução de HgNO₃ (10 mmol L⁻¹) com (1,0 mol L⁻¹) de KNO₃ e acidificada com HNO₃ concentrado até pH 1,0. Na determinação das curvas analíticas dos metais de interesse, foi utilizada a técnica voltametria diferencial de pulso (DPV) com uma amplitude de pulso de 25 mV e uma velocidade de varredura de 10 mVs⁻¹. A parte experimental foi desenvolvida em duas etapas. A primeira envolvia a determinação de todos os metais separadamente encontrando condições similares de varredura e eletrólito de suporte. Os eletrólitos utilizados foram soluções de KCl (1,0 mol L-1), KNO₃ (0,5 mol L-1) e tampão acetato pH 4, sendo está última escolhida como melhor condição a qual será usada na segunda etapa. A segunda etapa envolveu determinações simultâneas desses metais, efetuada através de préconcentração em -1,2 V por 60 s com varredura anódica de -1,2 até 0,2. A curva (a) da Figura 1 é apresenta um resultado obtido durante a varredura anódica, para Zn, Cd e Pb. É possível observar que estes metais apresentam potenciais bastante distintos o que indica que os mesmos poderiam ser determinados simultaneamente. Tabela 1. Neste caso, Zn, Cd e Pb em solução, não apresentarão interferências entre os picos, o que não ocorreu quando Co e Cu foram adicionados a solução do analito. Houve então o aparecimento de picos adicionais que podem estar relacionados à formação de compostos intermetálicos como por exemplo: 31ª Reunião Anual da Sociedade Brasileira de Química

Cu/Cd; Cu/Zn; Co/Zn². Estes picos podem ser responsáveis por ocasionar um deslocamento de alguns processos anódicos de redissolução e até sobreposições destes processos que acabam dificultando as determinações simultâneas destes metais.

Figura 1. Perfil voltamétrico da DP em Tampão Acetato pH 4, dep -1,2 V por 60s.

Tabela 1: Resultados experimentais.

Espécies	E _{pico} / V
Cu	0,03
Co	-0,13
Pb	-0,41
Cd	-0,60
Zn	-1,05

Conclusões

Os resultados obtidos mostram que é possível separar as interações entre os analitos, Cu, Pb Cd, Zn e Co em um mesmo eletrólito, mesmo que ocorra a formação de compostos intermetálicos.

Agradecimentos

Agradecemos a CNPq, FAPESP pelo apoio.

¹ Sanna, G. Pilo, M.I. Piu, P.C. Tapparo, A. Seeber, R. *Analytica Chimica Acta*, p. 165-173, v. 415, **2000**.

² Vanýsek, P. Modern techniques in electroanalysis. Canadá: John Wiley & Sons, 1996.

Sociedade Brasileira de Química (SBQ)