Desenvolvimento de métodos cromatográficos para monitoramento de reações de biotransformação de flavonóides por fungos filamentosos

Carla Rosane Mendanha da Cunha¹*(PG,) Lênis Medeiros de Freitas¹ (PG), Francislene Lavor Batista¹ (PG) e Valéria de Oliveira ¹ (PQ)

1.LaBiocon/Pós-graduação em Ciências Farmacêuticas Faculdade de Farmácia-UFG, CP131, CEP 74605-220, Goiânia-Go.

Palavras Chave: Bioconversão, cromatografia e flavanóides.

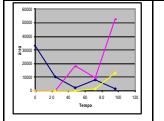
Introdução

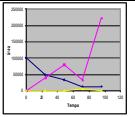
A elucidação do metabolismo de fármacos constitui um importante passo na avaliação da eficácia e segurança de novos compostos a serem introduzidos na terapêutica. Atualmente o estudo do metabolismo dos flavonóides ainda é incompleto, mas modelos microbianos, que utilizam fungos filamentosos, vêm sendo empregados como uma alternativa. Vários métodos vêm sendo utilizados para monitorar essas biotransformações, dentre eles, principalmente, a cromatografia liquida de alta eficiência (CLAE) e a cromatografia em camada delgada (CCD). O objetivo desse trabalho foi desenvolver um sistema cromatográfico eficiente para avaliar a formação de metabólitos de flavonóides e para estabelecer a cinética de formação dos mesmos.

Resultados e Discussão

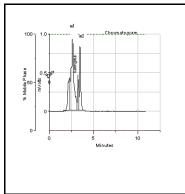
Foram testados três sistemas cromatográficos, tanto para CCD quanto para CLAE. Observe os parâmetros no quadro abaixo:

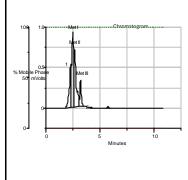
Quadro 1: Condições cromatográficas para CLAE


	Fase móvel	Fase estacionária
E1	Metanol/Tampão 65:35 100%, fluxo 0,8 mL/min, UV 280 nm	
E2	Metanol: Metanol/Tampão 65:35, fluxo 0,5 mL/min, UV 280 nm	Coluna Lichrospher 100 RP18
E3	Tampão AcNH4/ Acetonitrila, 77:23 fluxo 1,0 mL/min, UV 280nm	


Quadro 2: Condições cromatográficas para CCD

Quadro 2. Condições cromatograncas para CCD				
	Fase móvel	Fase	Revelador	
		estacionária		
E1	AcOEt/ MeOH	Sílica gel F	lodo e UV	
	95:35	254		
E2	AcOEt / MeOH	Sílica gel F	lodo e UV	
	70:30	254		
E3	AcOEt/ MeOH	Sílica gel F	lodo e UV	
	50:50	254		


Foi observado que os melhores resultados em CLAE foram obtidos no sistema isocrático (E1) para todos os flavonóides. Já para CCD o sistema E1 foi o que possibilitou a melhor separação para quercetina e naringenina. Já para naringina o sistema E2 foi o mais eficiente.


Quadro 3: Representação gráfica da cinética de formação dos metabólitos majoritários da naringina (direita) e naringenina (esquerda).

Quadro 4: Representação gráfica do sobrenadante de incubação da naringina e naringenina utilizando o sistema cromatográfico E1.

Conclusões

As metodologias CLAE-UV e CCD desenvolvidas mostraram-se adequadas ao monitoramento dos processos de biotransformação, possibilitando a separação e quantificação dos produtos obtidos pelas diversas cepas estudadas.

Walle, T. Free Radical Biology & Medicine 2004, 36, 829-837.

Sociedade Brasileira de Química (SBQ)

² Fang, T. et al. Journal of Pharmaceutical and Biomedical Analysis **2006**, 40, 454-459.