Investigação da Inibição do Crescimento e Morte Celular de Saccharomyces cerevisea por [Co^{III}(BHA)]⁺: uma possível prodroga biorredutora

Lidiane C. de Castro^{1*}(IC), Elizabeth T. Souza (PG)¹, Frederico A. V. de Castro² (PG), Marcos D. Pereira² (PQ), Sérgio P. Machado¹ (PQ) e Marciela Scarpellini¹ (PQ)

Introdução

Nas últimas décadas, a procura por novas metalodrogas antitumorais com atividade seletiva tem sido focada na hipoxia apresentada por tumores sólidos. Esta condição surge devido ao rápido crescimento celular consequente е vascularização. Uma estratégia para explorar essa característica é o uso de prodrogas ativadas biorredutivamente, entre as quais têm investigados complexos de Co^{III}, que após redução liberam agentes antitumorais devido à conhecida Co^{II}.1 íons Neste labilidade dos apresentamos os primeiros resultados da atividade do complexo² [Co^{III}(BHA)₂]⁺, e de sua forma reduzida [Co^{II}(BHA)₂], inibição nos processos de levedura crescimento morte celular da е Saccharomyces cerevisiae, com o objetivo de avaliar sua possível ação como uma prodroga biorredutível.

Resultados e Discussão

atividade biológica deste complexo determinada no modelo de célula eucariótica Saccharomyces cerevisiae. A cepa By4741 (MAT a; his3D1; leu2D0; met15D0; ura3D0) foi escolhida para os ensaios de inibição do crescimento e morte celular. O crescimento celular foi acompanhado pela contagem do número de células totais crescendo exponencialmente em glicose (2% glicose, 2% peptona e 1% extrato de levedura) expostas diretamente a ambas as formas oxidada e reduzida do complexo. A morte celular foi determinada por microscopia óptica utilizando-se câmara de Newbauer e corante de azul de comassie. Os resultados obtidos até o momento demonstram que o complexo [Co^{II}(BHA)₂] foi responsável pelos maiores níveis (58%) de inibição do crescimento celular (Figura 1). Podemos observar ainda que todas as concentrações estudadas do [Co^{II}(BHA)₂] foram capazes de inibir, de forma crescente, o crescimento celular (Figura 2). Com relação à morte celular foi possível verificar que em concentrações baixas do [Co^{II}(BHA)₂] as células, apesar da inibição do crescimento, permaneciam com atos níveis de sobrevivência. Já concentrações mais altas foram responsáveis por conduzir as células à morte após 24h de exposição (Figura 3). 31ª Reunião Anual da Sociedade Brasileira de Química

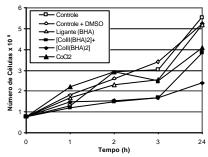


Figura 1: Inibição do crescimento celular de Saccharomyces cerevisiae após a adição dos complexos (0,5mM).



Figura2: Inibição dose dependente do crescimento celular de *Saccharomyces cerevisiae* após a adição do complexo [Co(BHA)₂]⁺.

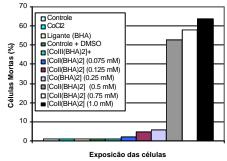


Figura 3: Morte celular provocada pelo complexo [Co(BHA)₂]⁺.

Conclusões

Resultados preliminares mostram que o complexo [Co^{II}(BHA)₂] demonstrou alta capacidade de inibir o crescimento celular, bem como em concentrações elevadas levar as células de *Saccharomyces cerevisiae* à morte.

Agradecimentos

Os autores agradecem ao PIBIC/CNPq, Faperj, PPGQI/IQ/UFRJ.

¹ Departamento de Química Inorgânica, ² Departamento de Bioquímica do Instituto de Química da Universidade Federal do Rio de Janeiro (UFRJ), CEP 21949-909, Rio de Janeiro, RJ. *marciela@iq.ufrj.br
Palavras Chave: complexos de Co^{III}, prodroga, hipoxia, antitumoral, Saccharomyces cerevisiae, biorredutível.

Sociedade Brasileira de Química (SBQ)

 $^{^1}$ Hambley, T. et al. Dalton Trans., **2006**, 1895-1901. 2 Souza, E.T et al. 22^a Reunião Anual da SBQ, **2007**,QI-058.