Estudos sobre a síntese de indanos

Emílio C. de Lucca Júnior¹ (IC), Daiane C. Sass¹ (PG), Kleber T. de Oliveira¹ (PQ), Gil V. J. da Silva¹ (PQ), Mauricio G. Constantino¹* (PQ). * mgconsta@usp.br

Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto-USP. síntese de indanos, ciclizações, Reagente de Stryker

Introdução

Estruturas do tipo indano 1 (figura 1) constituem o esqueleto carbônico de vários produtos naturais como o mutisiantol (2) e o jungianol β), além de outras substâncias com propriedades farmacológicas significativas. Os produtos naturais 2 e 3 têm sido encontrados na formulação de várias fragrâncias; o fármaco Indinavir® (4) tem sido utilizado como um dos constituintes do coquetel anti–AIDS (como inibidor da HIV–protease) e o Aricept® (5) no tratamento de sintomas relacionados ao mal de Alzheimer.

Figura 1

Resultados e Discussão

Para a preparação de anéis do tipo indano, propusemos uma metodologia que consiste na utilização de uma reação de adição 1,4–regiosseletiva de hidreto em sistemas *a,ß* - insaturados ligados a um anel aromático; para estas transformações propusemo–nos a utilizar o reagente de Stryker, [(Ph₃P)CuH]₆, um redutor bastante régio, químio e estereosseletivo segundo alguns exemplos da literatura. Recentemente obtivemos um resultado preliminar que reforça o prospecto destas transformações que pretendemos realizar (*esquema 1*). V

Esquema 1

Dessa forma, Iniciamos nossos estudos utilizando primeiramente como substrato, os compostos 8 e 9 (figura 2).

Figura 2

Quando reagimos o substrato 8 com 0,5 [(Ph₃P)CuH]₆ em tolueno à equivalente de temperatura ambiente, observamos a ocorrência da reação de adição conjugada seguida de ciclização originando os compostos 10 e 11, após meia hora de reação com rendimentos respectivamente de 16% e 74%. Já para o substrato 9 a conversão total ocorre após uma hora formando também os compostos desejados 12 e 13, com rendimento total de 79% da mistura na proporção de 40% para 60% dos diastereoisômeros, esta sendo proporção determinada através do RMN de ¹H da mistura, devido à dificuldade de separação destes diastereoisômeros (tabela 1).

Tabela 1

145014 1					
	Substrato	Equiv. hidreto	t (h)	Produto	%
I	\$\circ\$ \chi_2 \text{M\$\circ}\$	0,5	0,5	} = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	16
	8			8 14 80 10	74
II	9	0,5	1	HO H CO H	79

Conclusões

Concluímos que a reação com o reagente de Stryker em sistemas aromáticos semelhantes ao estudado, é um método muito eficiente para a preparação de anéis do tipo indano.

Agradecimentos

Agradecemos à FAPESP, ao CNPq e à CAPES pelo apoio financeiro.

i – Ferraz, H. M. C.; Aguilar, A. M.; Silva Jr., L. F.; Craveiro, M. V. Quim. Nova 2005, 28(4), 703.

ii – Mahoney, W. S.; Bretensky, D. M.; Stryker, J. M. J. Am. Chem.

Soc. **1988**, 110, 291. iii – a) Chung, W. K.; Chiu, P. Synlett **2005**, 1, 55. b) Chiu, P.; Leung, S. K. Chem. Commun. 2004, 2308. c) Kamenecka, T. M; Overman, L. E.; Sakata, S. K. L. Org. Lett. 2002, 4, 79.

iv Sass, D. C.; Oliveira, K. T.; Silva, G. V.; Constantino, M. G. 28^a Reunião da SociedadeBrasileira de Química QO-120 2005.