Estudo teórico sobre a acidez do ácido barbitúrico, do tiobarbitúrico e de alguns de seus derivados

Víctor de Souza Bonfim1 (IC)*, José Roberto dos Santos Politi1 (PQ).

1 – Universidade de Brasília, Instituto de Química, CP 4478 Brasília, DF, CEP 70910-900, Brasil.

e-mail: *victordsb@gmail.com

Palavras Chave: Ab initio, ácido barbitúrico, desprotonação, ácido tiobarbitúrico.

Introdução

O ácido barbitúrico (2,4,6-pirimidinatriona) e o ácido tiobarbitúrico (2-tioxo-4,6-pirimidinadiona) têm grande importância farmacológica, advinda de sua reatividade equivalente a de um ácido carboxílico. Diversos derivados desses ácidos são empregados no tratamento de disfunções neurológicas¹.

Recentemente, foram sintetizados compostos cíclicos inéditos a partir de derivados de barbituratos e tiobarbituratos, explorando o caráter ácido desses derivados. Na literatura, porém, não é encontrado estudo teórico que auxilie na compreensão da rota sintética proposta.

Neste trabalho são estudadas propriedades energéticas e estruturais do ácido barbitúrico, do ácido tiobarbitúrico e de alguns de seus derivados por meio de cálculos *ab initio* RHF, com a função de base aug-cc-pvdZ

Resultados e Discussão

Figura 1. Representação esquemática da molécula neutra e de cada ânion.

A partir dos resultados dos cálculos foram obtidas as energias totais e as geometrias de equilíbrio para o ácido barbitúrico e seus ânions, bem como para o ácido tiobarbitúrico e seus respectivos ânions. A

estrutura dos ânions é obtida a partir da molécula neutra (figura 1) retirando-se H⁺ das posições 1, 3 ou 5, ou até combinações entre elas.

A energia de desprotonação E^D (eq.1) permite inferir acerca da acidez de Brønsted desses compostos²: $E^D_n = E_n - E_{n-1}$ (1)

Os cálculos de E^D (tabela 1) evidenciam como a perda de um primeiro H⁺ é mais favorável que as demais, ao mesmo tempo em que sugerem que é mais provável que o 1º próton a sair da molécula esteja ligado a C e não a N. Pode-se observar também que o ácido barbitúrico deve apresentar um caráter ácido menor que o do tiobarbitúrico.

As geometrias de equilíbrio obtidas com os cálculos permitem que comparações sejam feitas entre os dois ácidos, como o acompanhamento de mudanças no comprimento de uma mesma ligação com a desprotonação, conforme feito na tabela 2.

Tabela 1. Valores de E^D (kJ/mol) para os ânions dos dois compostos

Posição*	5	1 e 5	1	1 e 3	1,3e5
8/O**	1414,588	1906,817	1449,607	1896,056	2359,670
8/S**	1374,473	1839,927	1414,335	1851,900	2280,454

* posição em que houve a desprotonação (figura 1).

** elemento presente na posição 8.

Tabela 2. Comprimentos de ligação (Å) N1-C2 para os dois compostos e seus ânions

Posição*	5	1 e 5	1	1 e 3	1, 3 e	5
8/O**	1,3763	1,3565	1,3200	1,3359	1,3889	1,3685
8/S**	1,3601	1,3329	1,2928	1,3073	1,3486	1,3543

Comparando as seqüências de comprimentos de ligação descritas na tabela 2, percebe-se que nas mesmas etapas em que a ligação alonga-se ou encurta-se para o ácido barbitúrico, a sua equivalente no ácido tiobarbitúrico apresenta o mesmo comportamento.

Atualmente estão sendo feitos cálculos para derivados 5,5-dietil substituídos, para depois de concluídos seus resultados serem comparados com os dados das tabelas acima.

Conclusões

Uma comparação dos resultados obtidos com dados de literatura experimental³ para o ácido barbitúrico e seu ânion 2a resulta em discrepância de no máximo 0,02Å para comprimento de ligação e 2,8° para ângulo de ligação. Além disso, para as propriedades estudadas o ácido tiobarbitúrico apresenta um comportamento análogo em relação ao barbitúrico, apesar de o caráter ácido ser mais acentuado, de acordo com E^D, no ácido tiobarbitúrico.

Agradecimentos

CNPq, Funpe-UnB, PIC-UnB.

¹ Aspesi, G. H.; Tese de Doutorado, 2006, IQ-UnB

² Daskalova, L. I.; Binev, I.; Int. J. Quantum. Chem. 2006, 106, 6, 1338

³ Binev, Y. I.; Georgieva, M. K.; Daskalova, L. I. Spectrochim Acta A **2004**, 60, 2061.