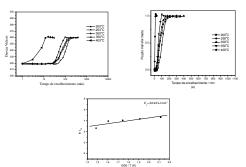
Envelhecimento da fase martensítica na liga Cu-9%Al-x%Ag (x=2,6 e12)

Aroldo G. Magdalena¹(PG)*, Antonio T. Adorno¹(PQ), Ricardo A. G. da Silva¹(PG), Alan C. Pilon¹(IC).

aroldogm@gmail.com

Departamento de Físico-Química – Instituto de Química-Unesp – Caixa Postal 355 – 14801-970 Araraguara-SP 1.


Palavras Chave: Cinética, envelhecimento, Cu-Al-Ag.

Introdução

As ligas nas quais a fase β bcc de altas temperaturas passa para a fase martensítica durante tempera têm sido objeto de várias pesquisas devido ao fato destas ligas possuírem propriedades mecânicas associadas com o efeito forma¹. memória de Neste trabalho. envelhecimento da fase martensítica nas ligas Cu-9%AI, Cu-9%AI-2%Ag, Cu-9%AI-6%Ag e Cu-9%AI-12%Ag foi estudado utilizando-se medidas de variação da microdureza com o tempo de envelhecimento, microscopia eletrônica de varredura e difratometria de raios X.

Resultados e Discussão

Para o estudo do envelhecimento das ligas, foram selecionadas cinco temperaturas abaixo da reação eutetóide no diagrama de equilíbrio do sistema Cu-Al. Nas curvas de envelhecimento da liga Cu-9%Al da figura 1-a foi possível observar que o aumento na variação da microdureza foi sempre precedido de um período de incubação que é mais curto quanto maior a temperatura de envelhecimento e que os valores iniciais e finais da variação da microdureza são praticamente os mesmos para as diferentes temperaturas de envelhecimento, indicando o mesmo processo em todas as curvas nas temperaturas consideradas. Para as amostras com adições de Ag as características do gráfico de envelhecimento são mantidas.

Figura 1. (a) Gráfico da variação da microdureza com o tempo de envelhecimento obtido para a liga Cu-9%AI, (b) gráfico da fração transfromada em função do tempo de envelhecimento obtido para a liga Cu-9%AI e c) gráfico de In t_{1/2} contra 1000/T obtido para a liga Cu-9%AI.

A análise dos difratogramas de raios X e as micrografias eletrônicas de varreduras para as ligas estudadas mostraram que a fase produto da reação de decomposição ($\alpha + \gamma_1$) não foi observada no intervalo de tempo e temperaturas consideradas neste trabalho. Isto indica que o produto final dessas reações deve corresponder à fase martensítica ordenada. Esta fase martensítica ordenada coexiste com uma fração de Ag não-dissolvida na matriz durante o tratamento térmico.

Para obter informações sobre a cinética do processo de ordenamento da fase martensítica nas ligas estudadas foram obtidas curvas de variação da fração transformada com o tempo de envelhecimento em diferentes temperaturas, como mostrado na figura 1-b para a liga Cu-9%Al.

O tempo necessário para que metade da reação da fase produto seja formada foi obtido e associado a uma equação do tipo de Arrhenius. O gráfico de In $t_{1/2}$ vs. 1000/T (fig. 1-c) forneceu uma reta e o coeficiente angular foi atribuído à energia de ativação para o processo de ordenamento da fase martensítica. Os valores de energia de ativação obtidos a partir da relação linear entre In $t_{1/2}$ e 1000/T para as amostras da liga Cu-9%Al com adições de 0, 2, 6 e 12 %Ag ficaram próximos daquele obtido para a migração de uma vacância na fase martensitica².

Conclusões

Os resultados obtidos mostraram que a presença de Ag retarda a reação de decomposição da fase martensítica $\beta' \to (\alpha + \gamma_1)$ nas ligas, aumentando a estabilidade da fase martensítica. As seqüências das reações verificadas experimentalmente foram: $(\alpha + \beta') \to \beta' \to \beta_1',$ ou seja, o consumo da fase α seguido do processo de ordenamento da fase martensítica formando a fase $\beta_1'.$ Os resultados do estudo cinético indicaram que o valor obtido para a energia de ativação deve corresponder ao consumo da fase α , que seria a etapa mais lenta e, portanto dominante no processo de envelhecimento.

Agradecimentos

Os autores agradecem à FAPESP e ao CNPg.

Ahlers, M. Materials Science and Engineering. 2003, A349, 120. Adorno, A. T.; Silva, R. A. G. J. Alloys and Comp. 2005, 402, 105.