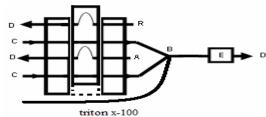
Determinação de Sacarina em Adoçantes Empregando Detecção Turbidimétrica em Sistema FIA

Camila Bitencourt Mendes (IC) e César Ricardo Teixeira Tarley (PQ)*

¹Universidade Federal de Alfenas (Unifal - MG), Departamento de Ciências Exatas, Rua Gabriel Monteiro da Silva, 714, CEP 37130-000, Alfenas – MG. *ctarleyquim@yahoo.com.br


Palavras Chave: Sacarina sódica, Sistema de Análise em Fluxo (FIA), Turbidimetria

Introdução

A sacarina foi descoberta por Fahlber e tão logo passou a ser produzida em escala industrial como o primeiro adoçante não derivado de carboidratos. O seu poder adoçante é cerca de 500 vezes mais doce quando comparado com a sacarose1. A quantificação da sacarina é essencial, pois há na literatura relatos que é potencialmente carcinogênica1. São relatados potenciométricos métodos cromatográficos. espectrofotométricos para sua quantificação, sendo que não há relatos sobre o emprego de medidas turbidimétricas². A única abordagem que existe neste aspecto refere-se à determinação indireta de sacarina após precipitação com AgNO₃ e posterior determinação da prata por espectrometria de absorção atômica com atomização em chama3. Assim, o método proposto tem como objetivo a determinação turbidimétrica de sacarina em sistemas FIA. O método é baseado na reação da sacarina com AqNO₃ formando um precipitado insolúvel, que é posteriormente determinado em 410 nm. O método é caracterizado pela simplicidade, baixo consumo de amostras/reagentes, alta fregüência analítica e ausência de interferências quando aplicado em amostras comerciais de adoçantes. Finalmente, cabe salientar que a otimização do método foi efetuada por meio de planejamentos fatoriais.

Resultados e Discussão

O diagrama do sistema de análise por injeção em fluxo é apresentado na figura 1. Para a otimização das variáveis químicas e de fluxo foi empregado o planejamento fatorial fracionário seguido planejamento Doehlert. Os fatores investigados foram: vazão do carregador (H₂O), concentração do reagente (AqNO₃) e da sacarina, volume das alcas do reagente e sacarina. Após análise de variância (ANOVA) com 95% de confiança constatou-se importância estatística de todos os fatores. Assim sendo, a otimização final dos fatores realizada planejamento Doehlert apontou os seguintes valores ótimos: concentração de AgNO₃ de 6,6 x 10⁻² mol L⁻¹, vazão do carregador água, 3,0 mL min-1 e volume das de sacarina e de AgNO₃, 371,2 e 313,14 µL, respectivamente. Cabe salientar que o emprego do surfactante triton X100 na concentração de 0,5 % e vazão de 0,5 mL min⁻¹ foi fundamental para evitar acumulação do precitado nos tubos de polietileno do sistema FIA.

Figura 1. Diagrama esquemático do sistema de análise por injeção em fluxo. R = AgNO₃; A = sacarina; D = descarte; C = carregador água; B = confluência; E = espectrofotômetro.

Após a otimização do método foram efetuados estudos com interferentes em potencial sendo eles: ciclamato. metilparabeno, ácido cítrico, benzóico е glicose. As razões testadas analito:interferente foi de 1:1, 1:2 e 1:10. Os sinais analíticos para soluções contendo apenas sacarina foram semelhantes àqueles contendo os possíveis interferentes em todas as razões analito:interferente testadas, confirmando a ausência de interferência. A curva analítica do método apresentou faixa linear de 1.0×10^{-2} até 3.0×10^{-2} mol L¹ com coeficiente de correlação de 0,9952. O método foi aplicado na determinação de sacarina em amostras comerciais líquidas de adoçantes sem prévio tratamento. Os valores obtidos variaram de 53,3 até 139,7 g L¹. Tais resultados são similares àqueles obtidos por trabalhos publicados na literatura. A fim de avaliar a exatidão do método será feita a comparação dos dados obtidos com cromatografia líquida de alta eficiência (HPLC).

Conclusões

O método proposto apresenta resultados satisfatórios para quantificação sacarina em adoçantes, sendo caracterizado pela simplicidade, baixo custo e consumo de reagentes/amostras.

Agradecimentos

FAPEMIG, CNPq e Unifal-MG

¹Baran, E. J.; Ylmaz, V. T., *C. C.* Reviews. 2006, *250*, *1980*. ² Filho, J. C.; Santini, A. O.; Nasser, A. L. M..; Pezza, H. R.; Oliveira, J. E.; Melios, C. B.; Pezza, L. Food Chemistry. 2003, *83*, 297.

Sociedade Brasileira de Química (SBQ)

³Yebra, M. C; Gallego, M; Valcárcel, M. Analytica Chimica Acta. 1995, *308*, *275*.