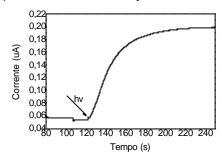
Transferência eletrônica fotoinduzida entre Quantum Dot CdS e nitrosilos complexos de rutênio na geração de óxido nítrico: Processo e Mecanismo

Juliana Cristina Biazzotto Moraes (TC), Simone Aparecida Cicillini (PQ), Mario Sérgio Pereira Marchesi (PG), e Roberto Santana da Silva (PQ)*. *silva@usp.br

¹Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo Av. do Café, s/n CEP: 14040-903 - Ribeirão Preto – São Paulo.


Palavras Chave: quantum dot, oxido nítrico, nitrosil e rutênio.

Introdução

Quantum dots (QDs) são partículas nanocristalinas que tem atraído especial atenção de pesquisadores devido as suas excelentes propriedades ópticas e grande aplicabilidade. Uma das possibilidades é usar QDs como antenas na absorção de luz e liberação de moléculas bioativas¹. Considerando-se o uso de nitrosilos complexos de rutênio como agentes liberadores de óxido nítrico e, como tal, passíveis de se constituirem uma nova classe de metalo-drogas, experimentos envolvendo transferência eletrônica QDs fotoinduzida entre е cis-[Ru(bpy)₂(4picolina)NO](PF₆)₃(**RuNO**) foram conduzidos.

Resultados e Discussão

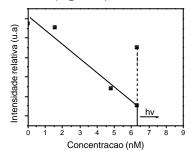
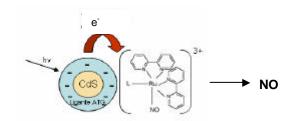

No presente estudo utilizou-se nanoparticulas de sulfeto de cádmio CdS (QDCdS) com o ligante ácido tioglicólico (ATG), e **RuNO** obtido a partir de *cis*-[Ru(NO₂)(bpy)₂(4-picolina)]⁺. O QDCdS apresentou banda de absorção na região de 450 nm e banda de emissão em 560 nm. A irradiação na região do visível, a qual o complexo nitrosilo não apresenta bandas de absorção, de uma solução aquosa contendo QDCdS e **RuNO** foi conduzida e monitorada por sensor seletivo (amiNO-700) de óxido nítrico (NO). Observase no cronoamperograma (Figura 1) uma intensa resposta imediatamente após o início da irradiação, relacionada à obtenção quantitativa de NO e portanto dependente da concentração de **RuNO**.

Figura 1. Cronoamperograma de liberação de NO da mistura QDCdS e complexo nitrosil rutênio.


A associação QDCdS e **RuNO** foi claramente evidenciado por espectroscopia de luminescência, em que se observa dependência da intensidade

luminescente em função da concentração do complexo nitrosilo (Figura 2).

Figura 2. Variação da intensidade da luminescência do QDCdS (λ_{em}= 560 nm) em função da concentração do de **RuNO**, antes (—) e após irradiação (----).

A transferência eletrônica entre QDCds e **RuNO** foi atribuída a uma possível interação eletrostática entre as espécies (Figura 3). A foto-liberação de NO foi acompanhada de aumento na intensidade da luminescência, típico de mudança na estrutura da supramolécula.

Figura 3. Modelo de transferência de energia do Quantum dot para complexo de rutênio.

Conclusões

Os resultados observados demonstram que o QDCdS atuou efetivamente como sensibilizador na liberação de NO a partir de um nitrosilo complexo de rutênio. A obtenção de NO por irradiação no visível foi quantitativa e portanto, dependente da concentração de **RuNO**.

Agradecimentos

CNPq e FAPESP

¹ Jamieson, T., Bakhshi, R, Petrova, D., Pocock, R, Imani, M., Seifalian, A.M. Biological applications of quantum dots, *Biomaterials*, 28, 4717, **2007**.

31ª Reunião Anual da Sociedade Brasileira de Química