Síntese e caracterização de novos complexos de cobalto(III) com ditiocarbimatos derivados de sulfonamidas.

Thayane C. de M. Nepel^{1*}(IC), Mayura M. M. Rubinger¹(PQ), Marcelo R. L. Oliveira¹(PQ). thayanecarpanedo@yahoo.com.br

¹Departamento de Química, Universidade Federal de Viçosa, Av.PH Rolfs s/n, Viçosa, MG. Palavras Chave:ditiocarbimatos, cobalto(III), complexos.

Introdução

Derivados de ditiocarbamatos apresentam diversas aplicações, destacando-se nas áreas industrial e biológica. Complexos de cobalto, por exemplo, possuem atividade catalítica. Os ditiocabimatos são compostos estruturalmente semelhantes, mas pouco relatados na literatura.

Neste trabalho é apresentada a síntese e a caracterização de complexos inéditos de cobalto(III) com ditiocarbimatos: $(Ph_4P)_3[Co(RSO_2N=CS_2)_3]$ onde $R=C_6H_5$ (1), $4MeC_6H_4$ (2), CH_3CH_2 (3) $CH_3(CH_2)_3$ (4), $CH_3(CH_2)_7$ (5).

Resultados e Discussão

Os complexos foram sintetizados adicionando-se 10 mL de uma solução aquosa contendo 2,1 mmol do ditiocarbimato de potássio apropriado (obtido a partir da sulfonamida correspondente por procedimento análogo ao descrito na literatura¹) a 10 mL de suspensão contendo 0,7 mmol de hexanitrocobaltato de potássio em água destilada. A mistura foi agitada por 1 h e filtrada. Em seguida, adicionou-se ao filtrado brometo de tetrafenilfosfônio (2,1 mmol). O precipitado verde obtido foi filtrado e lavado com água destilada. Rendimentos de 67-90%.

$$RSO_2N=CS_2K_2 \xrightarrow{K_3[Co(NO_2)_6], 3Ph_4PBr} (Ph_4P)_3[Co(RSO_2N=CS_2)_3]$$

$$+L_2O$$

 $R=C_6H_5(1)$, $4-MeC_6H_4(2)$, $CH_3CH_2(3)$, $CH_3(CH_2)_3$ (4), $CH_3(CH_2)_7$ (5).

Figura 1. Esquema de síntese dos complexos

Os compostos foram caracterizados por análise elementar, espectroscopia vibracional e de RMN de ¹H e ¹³C. As análises de CHN estão condizentes com as fórmulas moleculares propostas. Por exemplo, para o complexo **5**, temos como valores experimentais e esperados, respectivamente: 63,27% (61,45); 5,95% (5,67); 2,24% (2,24).

Nos espectros vibracionais dos complexos, a banda $\nu_{\text{C=N}}$ está deslocada para maiores números de onda em relação ao espectro do ligante livre, enquanto a banda de estiramento do grupo CS_2 tem deslocamento oposto, indicando a complexação do Co(III) pelos átomos de enxofre.² A tabela 1 mostra

como exemplo as bandas observadas no espectro do complexo **5** e no do respectivo ligante.

Tabela 1. Bandas observadas no espectro do complexo **5** e no do ligante livre, no infravermelho.

Composto	ν C=N	νSO_{2sim}	νCS ₂	vCo-S
Ligante 5	1273	1113	979	
Complexo 5	1356	1108	953	355

Ao cátion tetrafenilfosfônio são atribuídos os seguintes sinais nos espectros de RMN de ^{13}C (75 MHz, DMSO) & 117,6 (d, J=88,8 Hz), 130,5, 134,5 (d, J=10,5Hz) e 135,3. Foram observados, ainda, os sinais esperados para todos os átomos de carbono nos espectros de RMN dos complexos. Por exemplo, o espectro do complexo 1 apresentou os seguintes sinais para o ânion complexo: δ 212,7 (N=C), 144,9, 130,3, 127,7 e 126,5 (carbonos aromáticos). As curvas de integração nos espectros de RMN de ^{1}H confirmam a proporção 1:3 entre o ânion complexo e os cátions $\text{Ph}_{4}\text{P}^{+}$.

Conclusões

Foram sintetizados cinco novos complexos de cobalto(III) e as análises realizadas permitem concluir que estes compostos apresentam a estrutura indicada na figura 2.

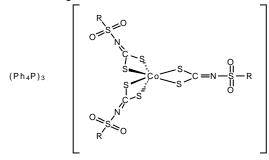


Figura 2: Possível estrutura dos complexos 1 a 5.

Agradecimentos

Os autores agradecem ao CNPq.

¹ Hartke, K. Archiv der Pharmazie. **1966**, 229, 174.

Sociedade Brasileira de Química (SBQ)

² Oliveira, M. R. L.; De Bellis, V. M. *Transition Metal Chemistry*. **1999**, 24, 127.