Potencialidade do óleo de amêndoas de uricuri (Attalea phalerata Mart. Ex Spreng) na produção de biodiesel

Andreza Cruz Barreto^{1,2} (PG), Sergio Massayoshi Nunomura² (PQ), José de Castro Correia³ (PQ) E-mail: smnunomu@inpa.gov.br

1 – Curso de Pós-graduação em Química -Universidade Federal do Amazonas

2 - Coordenação de Pesquisas em Produtos Naturais – Instituto Nacional de Pesquisas da Amazônia

3 - Faculdade de Tecnologia – Universidade Federal do Amazonas

Palavras Chave: energia elétrica, urucuri, comunidades isoladas

Introdução

A introdução do biodiesel na matriz energética do Estado do Amazonas vem sendo avaliada levando em consideração a sustentabilidade ambiental, social e econômica. A principal potencialidade do emprego do biodiesel na região é a geração de energia elétrica em comunidades isoladas¹.

Para a grande maioria dessas comunidades não existe acesso à energia elétrica, resultando em alguns dos piores Índices de Desenvolvimento Humano do país. O desenvolvimento regional baseado nas atividades extrativistas são uma das principais potencialidades para a região conciliando o desenvolvimento e a preservação da floresta. Dentre essas atividades, destaca-se a produção de óleos vegetais, que é a principal fonte de biodiesel no país, uma vez que existem várias espécies oleaginosas com significativo potencial de produção.

Neste trabalho, procurou-se avaliar o emprego do óleo extraído de amêndoas de uricuri produzido pela Comunidade do Roque localizada na Reserva Extrativista do Médio Juruá no Estado do Amazonas, na produção de biodiesel para a geração de energia elétrica nessa comunidade. Estima-se que a produtividade de óleo de uricuri obtido por prensagem mecânica esteja entre 3 a 7 kg de óleo/planta, com uma produção de 60 a 120 kg de frutos/planta/ano e rendimento de 66% de óleo das amêndoas.

Resultados e Discussão

A densidade do óleo de uricuri determinada foi de 0,9259 g/cm³. Os métodos empregados para a obtenção dos índices físico-químicos foram os métodos oficiais² e são apresentados abaixo.

Tabela 1: Índices físico-químicos do óleo de uricuri

Índice	Acidez	Peróxidos	lodo	Saponificação
	(mg KOH/g)	(meq/Kg)	(gl2/100 g)	(mg NaOH/g)
uricuri	1,5	7,3	13,5	197,1

O óleo apresentou baixo índice de acidez o que permitiu a sua conversão em biodiesel empregando a transesterificação por catálise básica. Os índices de saponificação e de iodo mostraram que o óleo é constituído de ácidos graxos cadeia curta e saturada. Esses resultados puderam ser

comprovados pela análise por cromatografia gasosa de alta resolução. O óleo foi convertido em ésteres metílicos de ácidos graxos que foram analisados em cromatógrafo equipado com sistema "dual-column" (colunas capilares HP-5 e Innowaw-20), detectores do tipo FID a 260° C, injetor em modo split a 220° C e forno programado.

Tabela 2: Composição da cadeia graxa do óleo

Cadeia	C6:0	C12:0	C14:0	C16:0	C18:0	C18:2	C18:3	Σ
Uricuri	5,4	37,9	17,7	11,4	4,4	2,2	15,5	94,5

A composição é predominantemente láurica, uma característica dos óleos de sementes de palmeiras.

Na conversão do óleo em biodiesel, avaliou-se o emprego de três diferentes catalisadores básicos, utilizando metanol na proporção de 1:6. As condições e os resultados são apresentados abaixo.

Em virtude desses resultados, avaliou-se também a produção em reator de bateladas com capacidade de 300 kg, utilizando-se o hidróxido de sódio como catalisador. As conversões foram avaliadas por cromatografia planar e CLAE-DAD.

Tabela 3: Conversão em biodiesel metílico

Catalisador	Tempo (h)	Temp. (ºC)	Rend (%)	d (g/ cm ³)
2% Metilato de sódio	2	50	93,0	0,8651
0,25 % FASCAT 4350	24	120	99,9	0,8643
1% NaOH (laboratório)	2	50	88,4	0,8603
1% NaOH (batelada)	1	50	85,0	0,8805

Conclusões

Observou-se uma boa conversão do óleo com todos catalisadores empregados, inclusive com o NaOH em maior escala. Os resultados obtidos comprovam a grande potencialidade do óleo de uricuri.

Agradecimentos

À FAPEAM/FINEP pela bolsa e auxílio financeiro e ao CNPq pelo auxílio financeiro.

^{1 -} Correia, J.C. T&C Amazônia. 2005, 3, 30-35.

^{2 -} Horwitz, W. Official Methods of Analysis of AOAC International. AOAC International, Maryland, EUA, 17 edição, volume II, 2000.