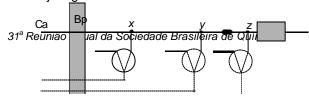
Quimiluminescência do peróxido de hidrogênio em alvejantes empregando multicomutação em fluxo.

Tuanne dos Reis Dias (IC), Felisberto G. Santos Júnior (IC), Elizabeth Nunes Fernandes (PQ). atenastutu@yahoo.com.br


Palavras Chave: Peróxido de hidrogênio, quimiluminescência, alvejantes, multicomutação em fluxo.

Introdução

No Brasil, é freqüente o uso de alvejantes, no geral à base de cloro, no processo de lavagem de roupas, em busca de remoção de manchas e de maior branqueamento. A grande desvantagem apresentada pelo uso do cloro é que este promove a remoção da cor, não podendo ser aplicados em roupas coloridas. Alternativamente, tem se observado nos últimos anos um crescimento expressivo de alvejantes sem cloro. A maioria destes novos produtos encontrados no mercado é produzida à base de peróxido de hidrogênio, que apresentam as vantagens do poder de remoção da sujeira em roupas brancas e coloridas. Uma das várias formas utilizadas para determinação do H₂O₂ são os métodos quimiluminescentes, onde produção de radiação ocorre а eletromagnética estimulada por uma reação química [1]. Para a realização deste trabalho, propõe-se o desenvolvimento de um procedimento analítico em fluxo empregando multicomutação e detecção quimiluminescente.

Resultados e Discussão

Para implementação deste trabalho montou-se um diagrama de fluxo, mostrado na Figura 1, onde a solução transportadora flui continuamente, recebendo, por confluência, a solução da amostra, através do acionamento da válvula V₁. Em seguida, pelo através do acionamento das válvulas V₂ e V₃, a solução de luminol e hexacianoferrato (III) de potássio foram inserida no percurso analítico favorecendo a através do luminômetro [2]. O sistema demonstrou resposta linear para faixa de concentração estudada, 1,2x10⁻³ mol? L⁻¹. Nas condições а experimentais estudadas, o sistema apresentou coeficiente de variação estimado em 1,59%; limite de detecção de 4,19x10⁻⁶ mol L⁻¹ de H₂O₂ e limite de quantificação de $1,4x10^{-5}$ mol L^{-1} de H_2O_2 e freqüência analítica de 106 determinações por hora. Após os resultados obtidos foram comparados com o clássico método de permanganometria para determinação de H₂O₂, conforme mostra Tabela 1, não apresentando diferença significativa em nível de 95%.

Figura 1. Diagrama de fluxos do módulo de análise empregado para determinação do H_2O_2 . Det. – Detector; V_1 , V_2 , e V_3 – válvulas solenóides de três vias, A – Amostra; C – carregador; R_1 – 4,5 x 10^{-3} mol L_1 luminol, 1,5 mL min⁻¹; R_2 – 5,0 x 10^{-2} mol L^{-1} K_3 [Fe(CN)₆], 1,5 mL min⁻¹; B – reator helicoidal, Det – Luminômetro; D – recipiente de descarte. Rec – reciclagem das soluções.

TABELA 1 – Comparação dos resultados

Amostras	$\begin{array}{cc} \text{M\'etodo} & \text{proposto}^l, \\ \text{mol } L^{-l} & \end{array}$	Método de referência ¹ , mol L ⁻¹
1	$1,49 \pm 0,07$	$1,37 \pm 0,00$
2	$1,44 \pm 0,04$	$1,17 \pm 0,00$
3	$1,95 \pm 0,01$	$1,52 \pm 0,02$
4	$1,46 \pm 0,05$	$1,15 \pm 0,03$
5	$1,85 \pm 0,07$	$1,40 \pm 0,03$

¹ Média de três consecutivas determinações ± desvio padrão.

Conclusões

Os resultados revelaram que o sistema proposto neste trabalho está apto para aplicação na determinação de peróxido de hidrogênio em amostras de alvejantes e que utilização da multicomutação proporcionou menor consumo de amostra e reagentes, proporcionando menor geração de resíduos.

Agradecimentos

Os autores agradecem ao CNPq pela concessão das bolsas de IC.

¹ Centro de Estudos Superiores de Imperatriz – CESI/UEMA, Rua Godofredo Viana, s/n, Imperatriz-MA;

² Universidade Federal do Maranhão, Campus II, Imperatriz-MA.

¹ Baldry, M. G. C. J. Appl. Bacteriol. 1983, 54, 417.

² Borges E.P.; Fernandes, E.N; Rocha, F.R.P.; Reis, B.F. *Quim. Nova.* **2002**, *25*, 1191.