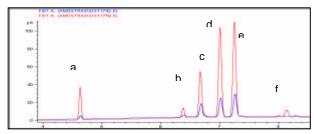
Determinação do teor de ésteres graxos em biodiesel metílico de soja e girassol por cromatografia gasosa por padronização interna com oleato de etila.

Fabrício Fredo Naciuk^{1,2} (IC), Samanta Caroline Martins de Almeida² (IC)⁷ Ana Maria de Souza Mello¹ (TC), Nair Maria Seibel¹ (TC), Marcelo Volpatto Marques¹ (PQ) e Luiz Antonio Mazzini Fontoura (PQ)^{1,2*}. lmazzini@uol.com.br

- (1) Departamento de Engenharia de Processos (DEPROC), Fundação de Ciência e Tecnologia (CIENTEC).
- (2) Curso de Química, Universidade Luterana do Brasil (ULBRA)

Palavras Chave: biodiesel, soja, girassol, oleato de etila, CG, padronização interna

Introdução


O biodiesel é constituído por uma mistura de ésteres graxos obtidos por reação de transesterificação de triacilgliceróis de óleos vegetais e gorduras animais (esquema 1) e vem sendo usado como combustível em misturas com diesel fóssil em teores de 2 a 5 %. A ANP recomenda para a determinação do teor de ésteres no biodiesel a norma européia EN 14103, a qual utiliza cromatografia gasosa com quantificação por padronização interna com heptadecanoato de metila e calibração por um ponto. Neste trabalho, foi estudado um método alternativo usando oleato de etila como padrão interno. O método foi aplicado ao biodiesel metílico de óleo de soja e girassol.

Esquema 1. Obtenção do biodiesel por transesterificação de triacilgliceróis.

O equipamento utilizado para realização dos ensaios foi um cromatógrafo gasoso HP, modelo 6890 Series II equipado com detector por ionização em chama (FID) e coluna HP-Innowax (30 m x 530 um x 1 um). A temperatura estabelecida inicialmente para coluna foi de 220 °C, (2 min) seguida por uma taxa de aquecimento de 5 °C min⁻¹, até 240 °C. Um sistema de injeção manual com injetor splitless e H₂ como gás de arraste a uma vazão de 3 mL min-1 foram usados. Biodiesel metílico de soja e girassol foram obtidos no laboratório². As amostras foram preparadas em hexano com concentrações de ca 1 e 0,5 mg mL⁻¹ do biodiesel e do padrão interno respectivamente, e analisadas em 18 replicatas. As amostras de biodiesel de óleo de soja foram analisadas por dois diferentes analistas.

Resultados e Discussão

Um cromatograma típico é apresentado na figura 1. São observados seis picos que correspondem aos seguintes ésteres: palmitato de metila (a), estearato de metila (b), oleato de metila (c), oleato de etila padrão interno) (d), linoleato de metila (e) e linolenato de metila (f). Os tempos de retenção são obtidos numa faixa que vai de 4,7 a 8,2 min, intervalo no qual o cromatograma foi integrado.

Figura 1. Cromatograma do biodiesel metílico de soja (vermelho) e de girassol (azul) com padrão interno oleato de etila.

Os teores de ésteres graxos nas amostras de biodiesel de óleo de soja e girassol foram estimados em 95,7 e 93,7 % respectivamente. A análise do primeiro apresentou um desvio padrão relativo (RSD) de 4,0% e, para o último, de 3,6 %. A precisão intermediária expressa através do RSD obtida para o biodiesel de soja pelo conjunto de resultados dos dois analistas foi também de 4 %.

Conclusões

O uso de oleato de etila como padrão interno na determinação cromatográfica da pureza de biodiesel metílico de óleo de soja e girassol mostrouse apropriado e o método, reprodutível.

Agradecimentos

FINEP

¹EN 14103 – Fats and oil derivatives – Fatty acid methyl esters (FAME) – Determination of ester and linolenic acid methyl esters contents.

Sociedade Brasileira de Química (SBQ)

²Meyer, S. A.; Morgenstern, M.A. Chem. Educator 2005, 10, 1.