Análises química e físico-química da fração oleosa obtida por Conversão a Baixa Temperatura de semente de mamona in natura.

Monique Kort-Kamp Figueiredo (PG)*, Gilberto A. Romeiro (PQ), Raimundo N. Damasceno (PQ) André L. Silveira (PG) e Priscila Alvares Pinto (IC). E-mail- moniquekort@yahoo.com.br

Universidade Federal Fluminense, Instituto de Química, Programa de Pós-Graduação em Química Orgânica, outeiro de São João Batista, s/nº, Campos do valonguinho - Centro – Niterói – RJ.

Palavras Chave: Conversão a Baixa Temperatura, fração oleosa e semente de mamona.

Introdução

A pirólise pode ser uma alternativa a escassez do petróleo já que seu principal objetivo é a obtenção de produtos com densidade energética mais alta e melhores propriedades do que àquelas da biomassa inicial. A pirólise pode ser definida como a degradação térmica de qualquer material orgânico na ausência parcial ou total de um agente oxidante.[1]

Dentre os processos de pirólise pode-se citar a CBT (Conversão à Baixa Temperatura) um dos processos mais promissores para a obtenção de energia, devido ao custo energético ser menor em comparação com os demais processos de pirólise, a não formação de dioxinas e furanos e o uso de matérias-primas de baixo ou sem valor comercial.[2]

A mamoneira (*Ricinus communis*) é uma planta pertencente à família das *Euforbiáceas*. É originária provavelmente da África ou da Índia, sendo atualmente cultivada em diversos países do mundo, sendo a Índia, a China e o Brasil, nesta ordem, os maiores produtores mundiais. [3]

Resultados e Discussão

A CBT da semente de mamona ocorre sob fluxo constante de nitrogênio (300 cm³/min), com uma taxa de aquecimento de 15°C/min até ser atingida a temperatura de 380°C. Ao fim do procedimento, são obtidos quatro frações, uma oleosa, uma aquosa, uma sólida e uma fração gasosa (**Tabela 1**).

Tabela 1 – Rendimentos médios* (%) da Conversão a Baixa Temperatura de sementes de mamona:

Fração	Média (%)
Sólida	29,0
Aquosa	13,0
Oleosa	50,0
Gasosa	8,0

A fração oleosa foi analisada quanto ao seu poder calorífico, teor de enxofre, ponto de fulgor, massa especifica, corrosividade ao cobre e viscosidade. Todas as análises foram feitas utilizando as normas ASTM. E os resultados estão demonstrados na Tabela 2.

Tabela 2 – Resultados das análises química e físicoquímica.

Análises	Fração Oleosa
Poder Calorífico	8.530 Kcal/Kg
Teor de enxofre	0,145 %m/m
Ponto de fulgor	56°C
Massa especifica	954,3 Kg/m ³
Corrosividade ao cobre	1 %m/m
Viscosidade	84,14 mm ² /s

Com esses resultados pode-se dizer que óleo puro sem tratamentos pode ser utilizado como um combustível líquido pesado em indústrias, de modo geral em equipamentos destinados a geração de calor — fornos, caldeiras e secadores, ou indiretamente em equipamentos destinados a produzir calor a partir de uma fonte térmica. Como especifica o regulamento técnico ANP nº 003/99.

Conclusões

Devido ao alto rendimento da fração oleosa obtida pela CBT de sementes de mamona (50,0%) e aos resultados obtidos nas análises realizadas nesse trabalho, pode-se concluir que o óleo obtido pode vir a ser um promissor combustível alternativo.

Agradecimentos

Os autores agradecem a CAPES e ao Depto. de Química Orgânica/UFF pelo suporte financeiro e apoio técnico.

¹ Bridgwater, A. V. Journal of Analytical and Applied Pyrolysis, **1999**, 51, 3-2

² Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. J. Am. Chem. Soc. 1986, 108, 3335

³ Polímeros: Ciência e Tecnologia, **2004**, 14 (1), 46 – 50

Sociedade Brasileira de Química (SBQ)