Estudo da interação entre alguns flavonóides e seus derivados com diferentes solventes por espectroscopia de fluorescência

Alessandra Medeiros Ribeiro¹ (PG)*, Dari Cesarin Sobrinho¹ (PQ), José Carlos Netto Ferreira¹ (PQ) alessandra@ufrrj.br

(1) Instituto de Ciências Exatas – Departamento de Química/PPGQO - Universidade Federal Rural do Rio de Janeiro – Rodovia BR-465, Km 07 – Seropédica – Rio de Janeiro – CEP: 23890-000

Palavras Chave: Flavonóides, fotofísica, fluorescência.

Introdução

Os flavonóides e seus derivados possuem inúmeras propriedades biológicas, sendo de grande interesse científico. Sendo assim, decidiu-se estudar o comportamento fotofísico de compostos como flavona (1), alfa-naftoflavona (2), beta-naftoflavona (3), tioflavona (4), S,S-dióxidotioflavona (5), flavanona (6) e tiocromanona (7) frente a diversos solventes com diferentes polaridades, utilizando-se a técnica de espectroscopia de fluorescência, de modo a se obter informações moleculares em diferentes ambientes químicos.

Resultados e Discussão

Os resultados de comprimento de onda máximo de fluorescência (λ_{max}) para os compostos 1-7 estão apresentados na Tabela 1. Os valores encontrados para 1-4 indicaram que, com o aumento da polaridade do solvente (na seguinte seqüência: cicloexano (CEX), etanol (ETOH), acetonitrila (ACN) e água (AD)), ocorreu deslocamento de λ_{max} para menor comprimento de onda (azul), possivelmente devido a uma maior participação do estado singlete de caráter 1 n π^{*} . Já para 6 houve deslocamento de λ_{max} para maior comprimento de onda (vermelho), apontando para uma maior participação do estado excitado singlete de caráter ¹ππ*. No caso de 7, ocorreu deslocamento de λ_{max} para o azul em solventes polares próticos (ETOH e AD) e para o vermelho em solvente polar aprótico (ACN), sugerindo uma maior mistura de estados, como conseqüência da presença do átomo de enxofre. Para 5 observou-se uma inconsistência nos valores de deslocamento de λ_{max} provavelmente devido a uma maior contribuição da interação solvente-soluto sobre os átomos de oxigênio que estão ligados ao átomo de enxofre.

Tabela 1. Comprimento de onda máximo de fluorescência (_{max}) para os compostos 1-7 em ACN, ETOH, CEX e AD.

Molécula	ACN	ETOH	CEX	AD
Ref.*	394,2	394,1	394,1	394,2
1	393,6	393,6	394,0	393,2
2	396,0	393,0	395,4	392,5
3	394,3	394,1	396,2	393,1
4	393,4	393,1	395,9	394,1
5	394,5	396,7	395,5	396,0
6	397,2	397,3	394,1	398,4
7	399,1	395,4	396,6	394,1

^{*} Ref. = naftaleno.

Os resultados de rendimento quântico de fluorescência relativo (\$\phi\$) para os compostos 1-7 estão mostrados na Tabela 2. Pôde-se verificar uma tendência de aumento nos valores de rendimento quântico com o aumento da polaridade do solvente, que pode ser atribuído a um processo emissivo mais eficiente ou à diminuição das velocidades de caminhos não radiativos. Parte desses efeitos, também pode ser justificada, como conseqüência da diminuição dos índices de refração desses solventes na seguinte ordem: CEX, ETOH, ACN e AD.

Tabela 2. Rendimento quântico de fluorescência relativo (φ_i) para os compostos 1-7 em ACN, ETOH, CEX e AD.

Molécula	ACN	ETOH	CEX	AD		
Ref.*	0,2256	0,21**	0,2488	0,3147		
1	0,2671	0,2418	0,2462	0,2757		
2	0,2746	0,2381	0,2309	0,4115		
3	0,2824	0,2447	0,2304	0,4785		
4	0,2715	0,2570	0,2322	0,2562		
5	0,2536	0,2102	0,2071	0,2735		
6	0,2556	0,2392	0,2305	0,2836		
7	0,1750	0,1598	0,1927	0,2167		
Oct westerland **\/alandalitanetuna						

^{*} Ref. = naftaleno. **Valor da literatura.

Conclusões

A influência da polaridade dos solventes sobre os valores de λ_{max} pode ser atribuída à diferentes possibilidades de estabilização dos níveis de energia dos estados fundamental e excitado. Os maiores valores de ϕ_{F} podem ser justificados pelo favorecimento dos processos radiativos, em ambientes de maior polaridade e/ou pela diminuição do índice de refração destes ambientes.

Agradecimentos

UFRRJ e CAPES.