Estudo de fotodegradação e de pureza do Ramipril utilizando a calorimetria exploratória diferencial

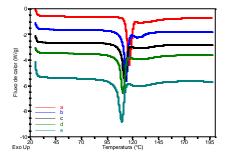
Rita de Cássia da Silva¹ (PG), Carla C. S. Cavalheiro¹ (PQ), Éder Tadeu Gomes Cavalheiro¹ (PQ)*

1 – Universidade de São Paulo – Instituto de Química de São Carlos e-mail: <u>cavalheiro@igsc.usp.br</u>

Palavras Chave: ramipril, fotodegradação, DSC

Introdução

O monitoramento de fármacos residuais no meio ambiente vem ganhando grande interesse devido ao fato de muitas dessas substâncias serem freqüentemente encontradas em efluentes de Estações de Tratamento de Esgoto (ETEs) e águas naturais¹.


Geralmente, os fármacos são absorvidos pelo organismo e estão sujeitos a reações metabólicas. Entretanto, uma quantidade significativa dessas substâncias originais e seus metabólitos são excretados, sendo freqüentemente encontrados no esgoto doméstico. Dentre estes fármacos tem-se o antiipertensivo ramipril, o pró-fármaco de seu metabólito ativo ramiprilato, que inibe a enzima conversora de angiotensina².

Este trabalho propõe a identificação dos possíveis produtos da fotodegradação do ramipril bem como a determinação do seu grau de pureza. A amostra foi submetida à irradiação em uma câmara escura utilizando-se uma lâmpada de UV de 400W de potência, cuja temperatura foi mantida em torno de 25 °C ± 1 °C. Frações da amostra foram retiradas em tempos entre 0 e 53h. Utilizou-se a calorimetria exploratória diferencial (DSC) com a finalidade de verificar as mudanças provocadas pela luz, usando-se medidas do grau de pureza, após a irradiação.

Resultados e Discussão

Inicialmente fez-se a investigação da melhor razão de aquecimento, entre 2,5; 5,0; 10 e 20°C, sendo os melhores resultados obtidos a 10°C min⁻¹. Frações da amostra foram coletadas após irradiação por zero; 17; 40; 47 e 53 horas. As demais condições utilizadas foram: massa de amostra de 3,0 mg; atmosfera de nitrogênio, fluxo de 50 mL min⁻¹; em suporte de amostra em alumínio fechado com tampa hermética. As curvas DSC estão representadas na Figura 1.

Para avaliação do grau de pureza utilizou-se o software TA Advantage, da TA Instruments. O software fornece os resultados da pureza do material a partir da área do pico de fusão. Pôde-se observar que o tempo de irradiação da amostra apresenta influência no processo de fusão das amostras, evidenciando mudanças na pureza do material.

Figura 1. Amostras irradiadas (a)0h, (b)17h, (c) 40h, (d)47h, (e) 53h. Atmosfera de N₂. Razão de aquecimento de 10°C min⁻¹. Vazão de 50mL min⁻¹. m=6.0 mg. Suporte de amostra: panelinha hermética.

Como se pode observar na Figura 1, o processo de fusão é antecipado à medida que aumenta o tempo de irradiação da amostra, alargamento do pico endotérmico correspondente. Este fato sugere mudança na composição da amostra, após irradiação.

Tabela 1: Influência do tempo de irradiação no grau de pureza do fármaco

Tempo de irradiação (h)	% Pureza
0	99,54
17	98,42
40	96,95
47	96,18
53	94.17

A Tabela 1 apresenta os resultados obtidos para o grau de pureza das amostras nos diferentes tempos de irradiação. Estes resultados sugerem que o grau de pureza do material diminui quanto mais tempo a amostra é submetida à irradiação.

Após 53 horas de irradiação a amostra ainda conservou 94,17% de pureza, isto é, somente 5,83% se degradou.

Conclusões

A partir dos resultados obtidos pode-se concluir que o ramipril tem boa estabilidade térmica frente radiação de ultravioleta e que o DSC pode ser uma ferramenta útil nesta avaliação.

Agradecimentos

À Capes e à FAPESP pelo auxílio financeiro.

31ª Reunião Anual da Sociedade Brasileira de Química

Sociedade Brasileira de Química (SBQ)

^{1.} Bila, D. M.; Química Nova, 2003, 26, 4.

². Martindale the Extra Pharmacopoeia (Hardcover) 31st ed. 1996.