# SÍNTESE E CARACTERIZAÇÃO DE UM COMPLEXO RESULTANTE DA INTERAÇÃO DE ÁCIDO ASPÁRTICO E METIONINA COM Cu(II).

Luciana Dornelas Pinto (PG)<sup>1</sup>, Judith Felcman<sup>\*</sup>(PQ)<sup>1</sup>, Vanessa Mothe Behring(IC)<sup>1</sup>, Fernanda de Andrade Lima(IC)<sup>1</sup>

Palavras Chave: complexos mistos, Ab-amiloide, doenças neurodegenerativas

# Introdução

As doenças neurodegenerativas possuem fatores em comum como o desequilíbrio na concentração de íons metálicos e má formação de proteínas que se depositam formando placas que levam ao stress oxidativo e morte neuronal.

A doença de Alzheimer (DA) é acompanhada de placas neuríticas e emaranhado neurofibrilar e está associada à deposição da proteína A $\beta$  - amiloide, composta por 42 aminoácidos, que é o principal componente das placas neuríticas  $^2$ .

As concentrações extracelulares de metais de transição como Fe e Cu se elevam com envelhecimento e desordens neurodegenerativas. Estudos de NMR revelam que o Cu liga-se à placa  $A\beta$ -amiloide da  $DA^3$ . Este trabalho consiste na síntese e caracterização de um complexo resultante da interação do Cu(II) com dois aminoácidos presentes na placa  $A\beta$  - amiloide: Ácido aspártico (Asp) e a metionina (Met) (Figura 1).

Figura 1: a- Ácido Aspártico, b- Metionina

# Resultados e Discussão

A síntese envolveu a adição lenta de CuCl<sub>2</sub> na solução aquosa contendo os dois aminoácidos Asp e Met sob agitação a temperatura ambiente. Após 5 horas sob agitação sem aquecimento, concentrou-se em rota evaporador o volume da solução a um terço deixando o restante evaporar lentamente à temperatura ambiente. Após uma semana obteve-se um precipitado azul que foi filtrado e seco em estufa à 40° C. Posteriormente foi caracterizado por análise elementar (CHN), absorção atômica (Cu), análise termogravimétrica (TGA) e espectrofotometria UV-Vis e infravermelho. Após a análise elementar (Tabela 1) a fórmula empírica para o complexo formado [CuC<sub>9</sub>H<sub>16</sub>N<sub>2</sub>O<sub>6</sub>S], foi sugerida.

Tabela 1: Análise elementar experimental e calculado

| abela 1. Arialise elemental experimental e calculado |       |      |     |           |  |
|------------------------------------------------------|-------|------|-----|-----------|--|
|                                                      | С     | Ι    | Ν   | Cu        |  |
| Experimental                                         | 31,0% | 5,0% | 7,8 | 18,6<br>% |  |
| Calculado                                            | 31,4% | 4,6% | 8,1 | 18,5<br>% |  |

O espectro de UV-Vis do complexo apresentou bandas de transição dd próxima a 630 nm que foi comparado com UV-Vis do CuCl<sub>2</sub> em água (~800 nm), em excesso de cloreto (~900 nm) e em excesso de amônia (-620 nm), indicando coordenação pelo grupo amino (ligante de campo forte). Juntamente com os fragmentos de massa obtidos através da curva de decomposição térmica (tabela 2), propôs-se que o cobre apresentou número de coordenação 4, e os dois aminoácidos se comportaram como ligantes bidentados se coordenando pelo nitrogênio do carbono alfa e pelo oxigênio do carboxilato vizinho a ele.

Tabela 2: Valores da curva de decomposição térmica

| Temp. <sup>0</sup> C | Massa<br>% | Exp. g | Calc. g | Fragmento                |
|----------------------|------------|--------|---------|--------------------------|
| 0 - 280              | 63,06      | 216,69 | 216     | $C_5H_8SO$ , $C_4H_4O_3$ |
| 300 - 600            | 14,02      | 48,1   | 48      | 2 O, NH <sub>2</sub>     |
| resíduo              | 22,91      | 78,7   | 79,5    | Cu, NH <sub>2</sub>      |

Os resultados obtidos no espectro de IV (tabela 3) permitem confirmar a proposta de estrutura (Figura 2)

Tabela 3: Principais bandas de infravermelho

|             | Total Control of the |            |            |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|--|--|--|
| Atribuições | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Met        | Complexo   |  |  |  |  |  |
| v NH        | 3139, 3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3155, 3048 | 3427, 3307 |  |  |  |  |  |
| ν C=O       | 1691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1619       | 1742       |  |  |  |  |  |
| v COO-      | 1618, 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1598, 1410 | 1648, 1399 |  |  |  |  |  |
| ν Cu-N      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          | 576, 448   |  |  |  |  |  |
| ν Cu-O      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          | 251, 207   |  |  |  |  |  |

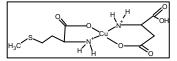



Figura 2: Estrutura proposta para o complexo

### Conclusões

Os dados de CHN e TGA indicam que foi formado um complexo misto do ácido aspártico e metionina e que ambos ligam-se de forma bidentada ao cobre A complexação foi confirmada pelo deslocamento das bandas dd observado no UV visível e pelos dados de infravermelho.

# Agradecimentos

Ao CNPq pela bolsa de doutorado (LDP) e de produtividade (JF) e a PUC-Rio.

<sup>&</sup>lt;sup>1</sup>Departamento de Química – Pontifícia Universidade Católica PUC-RJ - <sup>\*</sup> felcman @rdc.puc-rio.br

<sup>&</sup>lt;sup>1</sup>L.Berg, J.C.Morris, Clinical presentation: diagnosis, Alzheimer disease, Rave, Nova York; **1994**, 9-25.

Sociedade Brasileira de Química (SBQ)  $^2$  M.Citron,  $\it et al.$  "Mutant presenilins of Alzhemer's disease increase production of 42-residue  $\beta$ -protein in both transfected cells and transgenic mice", Nat Med, 3; **1997**, 67-72.

<sup>3</sup> L.Hou, e M.G.Zagorski, "NMR reveals anomalous copper (II) binding to the amyloid  $\ensuremath{\mathsf{A}\beta}$  peptide of Alzheimer's disease", J Am Chem Soc, 128; **2006**, 9620-9621.