Influência do Imidazol e de Surfactantes na Reação Quimiluminescente do Sistema Peróxi-Oxalato por Peróxido de Hidrogênio.

Ana Clara Beltran Rodrigues¹ (IC), Patrícia Dantoni^{1*} (PQ), Nina Coichev². patricia.dantoni@ufabc.edu.br.

- (1) Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André SP.
- (2) Instituto de Química, Universidade de São Paulo, São Paulo SP.

Palavras Chave: quimiluminescência, peróxi-oxalato, surfactantes, peróxido de hidrogênio, TCPO, imidazol.

Introdução

A reação quimiluminescente do sistema peróxioxalato ocorre quando há a oxidação de um éster fenólico do ácido oxálico, com peróxido de hidrogênio, na presença de um fluoróforo e é usada analiticamente para a determinação de diversos analitos, dentre eles, o peróxido de hidrogênio Este trabalho apresenta um estudo de parâmetros que afetam a reação quimiluminescente do TCPO (oxalato de bis (2,4,6) triclorofenila) com peróxido de hidrogênio e DFA (9,10-difenilantraceno) como fluoróforo, na presença de diferentes surfactantes. Foram avaliadas a presença do imidazol, utilizado como catalisador¹ da reação, em duas concentrações, micelar crítica concentração (cmc) surfactantes, a presença e natureza do tampão e a porcentagem de acetonitrila. Os valores de intensidade máxima (Imax) e de área (A) da reação quimiluminescente foram obtidos em luminômetro (Lumat 9507 - Berthold Tecnologies) empregando-se os surfactantes: DDAH (3-(dodecildimetil amônio) propano 1-sulfato), anfótero, CTAB (brometo de cetiltrimetil amônio), catiônico, e SDS (dodecil sulfato de sódio), aniônico.

Resultados e Discussão

Para verificar se a cmc influencia na reação, foram avaliados os valores de Imax e A em concentrações duas, cinco e dez vezes a cmc. As maiores sensibilidades foram obtidas para surfactantes preparados em 10 cmc, provavelmente promoverem micro ambientes mais propícios à melhor solubilização dos reagentes². Observou-se que o tampão Tris/HTris+ 0,1 mol L-1 apresenta resultados mais sensíveis, comparados com aqueles obtidos em tampão fosfato. Na tentativa de aumentar a sensibilidade da reação foi introduzido imidazol e verificado o comportamento em duas concentrações, 10⁻³ mol 1,25 x 10⁻² mol L⁻¹. A maior concentração apresentou maior sensibilidade. A tabela 1 apresenta os melhores resultados obtidos para Imax e A, mantendo-se fixa a concentração H₂O₂, com porcentagens de acetonitrila diferentes. As 31ª Reunião Anual da Sociedade Brasileira de Química

concentrações dos demais reagentes foram: DFA 1,0 x 10⁻³ mol L⁻¹ e TCPO 4,5 x 10⁻⁴ mol L⁻¹.

Tabela 1. Valores de Intensidade máxima e Área obtidos para H₂O₂ 1,00 x 10⁻⁴ mol L⁻¹.

	DDAH	СТАВ	SDS	Sem Surf.	Sem Surf.
Intensidade Máxima/10 ⁶					
Sem Imidazol	1,12 ^{a,c}	1,91 ^{a,c}	0,23 ^{a,c}	0,28 ^{b,c}	0,16 ^{a,c}
Com Imidazol	3,00 ^{b,d}	2,94 ^{b,d}	3,39 ^{b,d}	4,09 ^{b,d}	2,26 ^{b,c}
Área/10 ⁶					
Sem Imidazol	4,35 ^{a,c}	5,26 ^{a,c}	2,78 ^{a,c}	5,40 ^{b,c}	0,21 ^{a,c}
Com Imidazol	13,07 ^{b,d}	9,77 ^{b,d}	17,6 ^{b,d}	108,80 ^{b,d}	3,93 ^{b,c}

a, 25% ACN/75% $\rm H_2O.$ b, 62,5% ACN/37,5% $\rm H_2O.$ c, Meio tampão Tris/HTris $^+$ pH 8,680. d, Meio não-tamponado.

Conclusões

Verifica-se que, apesar do surfactante aniônico apresentar intensidade máxima oito vezes menor que a do surfactante catiônico, os valores de área são apenas a metade, sugerindo que a reação também é eficiente para esta natureza de surfactante. A presença de tampão Tris/HTris+ não favorece a reação em presença de imidazol. Melhores sensibilidades são obtidas na presença de imidazol e ausência de surfactante e de tampão. Nesta situação, apesar da alta porcentagem de acetonitrila, é possível determinar concentrações de peróxido ra faixa de µmol L-1. Fica evidente que, se a concentração de H₂O₂ estiver na faixa de 10 µmol L⁻¹, pode-se excluir o imidazol e trabalhar-se com 25% de acetonitrila, diminuindo a quantidade de resíduos tóxicos gerados.

Agradecimentos

UFABC, CNPq e FAPESP.

Sociedade Brasileira de Química (SBQ)

¹ Nakamura, M.M; Saraiva, S.A.; Coichev, N., Anal. Letters. **1999**, 32(12), 2471.

² Dan, N; Miu, L.L.; Grayeski, M.L., Anal. Chem. 1991, 63, 1766.