Propriedades luminescentes de complexos entre európio (III) e cucurbit[6]urilas

Paulo Cesar de Sousa Filho* (IC), Ariane Corrêa Marques (IC), Osvaldo Antonio Serra (PQ) e Grégoire Jean-François Demets (PQ) (*<u>pcsfilho@aluno.ffclrp.usp.br</u>)

Departamento de Química – Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – Universidade de São Paulo Av. Bandeirantes, 3900 – CEP 14040-901 – Ribeirão Preto, SP.

Palavras Chave: Cucurbiturilas, Complexos macrocíclicos, Luminescência, Európio, Terras Raras.

Introdução

cucurbiturilas (cb[n]) As são macrociclos compostos por n unidades glicolúricas (Fig. 1). Sua estrutura é altamente rígida, simétrica e, ao contrário de outros macrociclos (calix[n]arenos, ciclodextrinas, éteres-coroa), apresenta uma grande cavidade apolar e grupos carbonílicos orientados para fora dessas cavidades¹. A Química de Coordenação das cucurbiturilas tem sido alvo de diversos estudos recentes; nesse sentido, esse trabalho visou à síntese de complexos entre cb[6] e Eu³⁺, cujas propriedades luminescentes únicas fornecem várias informações sobre a natureza desses novos compostos.

Figura 1. Estrutura da cucurbit[6]urila^{2,3}.

Resultados e Discussão

Os complexos foram obtidos através da reação entre cb[6] e soluções 0,1 mol L-1 Eu(NO3)3 (cb[6]:Eu3+=1:25), em meio aquoso e meio de DMF:EtOH (1:1). As composições aproximadas dos complexos (determinadas por TGA e titulação complexométrica) são Eu₂cb[6](NO₃)₆.10H₂O е Eu₆cb[6](NO₃)₁₈. A coordenação da cb[6] com o Eu³⁺ é evidenciada pelos espectros de IV, em que a banda de estiramento C=O se desdobra em duas componentes e é deslocada para menores energias. Os espectros de excitação apresentam, em ambos os casos, somente bandas relativas a transições f-f do íon Eu^{3+} (${}^{5}D_{J}$, ${}^{5}G_{J}$, ${}^{5}H_{J}$, ${}^{7}L_{J}$? ${}^{7}F_{0}$), indicando que a banda de transferência de carga ligante-metal ocorre somente em energias superiores a 40.000 cm⁻¹. Nos espectros de emissão (Fig. 2), observa-se a predominância das transições $^5D_0?\ ^7F_2$ sobre as ⁵D₀? ⁷F₁, o que mostra que o Eu³⁺ ocupa sítios sem centro de inversão e de baixa simetria (C_1 , C_2 , C_2). complexo hidratado, observam-se duas No componentes na transição ${}^{5}D_{0}$? ${}^{7}F_{0}$ e quatro componentes na ${}^{5}D_{0}$? ${}^{7}F_{1}$, o que mostra que há dois sítios de coordenação distintos. No complexo anidro,

em que a transição ⁵D₀? ⁷F₀ também possui dois desdobramentos, o aparecimento de bandas estreitas é resultado da ausência de osciladores vibracionais OH, bem como da alta rigidez estrutural conferida pela presença da cb[6]. Os tempos de vida e eficiências quânticas revelam que, nos dois casos mecanismos de decaimentos não-radiativos são predominantes. Pela equação de Horrocks⁴, o número médio de águas coordenadas ao Eu³⁺ é aproximadamente 3.

Figura 2. Espectros de emissão (λ_{ex}=394 nm, 77 K) dos complexos (a) hidratado; (b) anidro.

Tabela 1. Tempos de vida, taxas de decaimento radiativo e não-radiativo e eficiências quânticas (D_0) do íon Eu³⁺ nos complexos sintetizados

	t (ms)	A _{RAD} (s ⁻¹)	A _{NRAD} (s ⁻¹)	F (%)
Eucb[6].xH ₂ O	0,38	302	2329	11
Eucb[6]	1,05	230	722	24

Conclusões

Complexos luminescentes entre Eu³⁺ e cb[6] foram sintetizados e algumas características das possíveis estruturas assumidas e dos sítios de coordenação ocupados foram observadas. Estudos futuros compreenderão uma avaliação mais aprofundada das propriedades estruturais e da aplicabilidade desses compostos em dispositivos supramoleculares luminescentes.

Agradecimentos

CAPES, CNPq e FAPESP.

¹ Demets, G. J.-F.; *Quim. Nova.* **2007**, 30, 1313.

² Samsonenko, D. G. et. al.; Eur.. J. Inorg. Chem. 2002, 2380.

Sociedade Brasileira de Química (SBQ)

- ³ Buschmann, H.-J. *et. al.*; *Inorg. Chem. Comm.* 2003, 6, 531.
 ⁴ Supkowski, R. M; Horrocks, W. D; *Inorg. Chim. Acta* 2002, 340, 44.