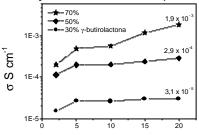
Influência da composição do eletrólito polimérico para aplicação em células solares de TiO₂/corante

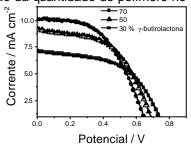
João E. Benedetti (PG), Marco A. De Paoli (PQ), Ana F. Nogueira (PQ).


LNES - Laboratório de Nanotecnologia e Energia Solar Instituto de Química - UNICAMP Campinas, SP, BRASIL, jebenedetti.iqm@unicamp.br Palavras Chave: célula solar, eletrólito polimérico, g-butirolactona.

Introdução

Células solares de TiO2/corante são constituídas por um fotoeletrodo de nanopartículas de TiO2 depositado sobre a superfície de um substrato condutor e modificado por um corante fotosensibilizador. O filme de óxido poroso/corante é preenchido por um eletrólito no qual está presente o par redox 1/13. O dispositivo é fechado com um contra-eletrodo de platina originando um dispositivo do tipo "sanduíche". Um dos maiores problemas na montagem deste tipo de dispositivos é a presença de um eletrólito líquido, que necessita de uma vedação perfeita a fim de se evitar a evaporação do solvente que compromete sua estabilidade e durabilidade. Visando reduzir os problemas acima citados, este trabalho tem por objetivo a investigação de eletrólitos poliméricos por poli (óxido de etileno-co-2-(2metoxietoxi) etil glicidil éter)/ γ-butirolactona/Lil/l2 -P(EO/EM)/GBL/Lil/l₂ para aplicação nas células solares.

Resultados e Discussão


A Figura 1 mostra os resultados de condutividade iônica (σ) dos eletrólitos poliméricos em relação à concentração de Lil. A quantidade de γ -butirolactona - GBL foi mantida constante em 30, 50 e 70% em relação à massa total de polímero.

% Lil m m $^{-1}$ Figura 1. Variação da σ dos eletrólitos poliméricos composto por P(EO-EM), Lil, GBL e I $_2$

Como pode-se observar na Figura 1, o aumento da quantidade de GBL no eletrólito promove uma intensificação da condutividade iônica para todas as concentrações de Lil investigadas. A presença da GBL no eletrólito contribui tanto para aumentar a dissociação do Lil quanto para intensificar o transporte iônico no sistema.

A Figura 2 mostra as curvas de corrente potencial – (I-V) das células solares montadas utilizando eletrólitos composto com diferentes quantidades de GLB. A quantidade de Lil foi fixada em 20% m m⁻¹. O aumento da quantidade de GBL no eletrólito promoveu uma intensificação da fotocorrente (Isc) do dispositivo, conseqüência da maior condutividade iônica do eletrólito, e uma diminuição do potencial de circuito aberto (Voc), que está relacionado com a diminuição da quantidade de polímero no eletrólito.

Figura 2. Curva I-V das células solares utilizando eletrólitos com diferentes quantidades de GBL sob irradiação de 100 mW cm⁻².

A Tabela 1 mostra os valores de (Voc), (Isc) e eficiência de conversão de energia (η) obtidos a partir das curvas I-V.

Tabela 1. Desempenho das células solares utilizando eletrólitos com diferentes quantidades de GBL.

Quantidade GBL (%)	Voc (V)	Isc (mA cm ⁻²)	η (%)
70	0,66	10,18	3,41
50	0,68	9,20	3,41
30	0,76	7,15	2,91

Conclusões

O eletrólito polimérico formado por $P(EO/EM)/GBL/LiI/I_2$ mostrou excelentes propriedades para aplicação em células solares de TiO_2 /corante. A adição de 70% de GBL m m⁻¹ no eletrólito promoveu um aumento de duas ordens de grandeza na condutividade iônica. A eficiência (η) aumenta com a intensificação da condutividade iônica até 2.9×10^{-4} S cm⁻¹, acima deste patamar a (η) é praticamente constante indicando que outros fatores são mais importantes para aumentar este parâmetro, principalmente os processos de recombinação nas interfaces.

Agradecimentos

FAPESP (06/58998-3) e DAISO/Japão