Utilização do compósito estanho/nióbia para remoção de quinolina e azul de metileno.

Fabiane de O. Cantão ^{1*} (PG), Aline R. Passos ¹ (IC), Walclée de C. Melo ¹ (PQ), Luiz Carlos A. de Oliveira ¹ (PQ). * fabiane_cantao@yahoo.com.br

¹Departamento de Química; Universidade Federal de Lavras, Caixa Postal 37, CEP: 37200-000 – Lavras, Minas Gerais, Brasil.

Palavras Chave: Estanho, nióbia, quinolina, azul de metileno.

Introdução

O desenvolvimento industrial contribui muito para a poluição, ocasionando tanto a poluição aquática como a atmosférica. Compostos nitrogenados constituem uma ameaça ao meio ambiente, pois contribuem para a formação da chuva ácida e do "smog" fotoquímico¹. O crescimento da indústria têxtil promove a contaminação da água por moléculas orgânicas. O trabalho teve como objetivo o preparo do compósito Sn/Nb $_2$ O $_5$ para a remoção de quinolina (molécula orgânica modelo) e azul de metileno (corante têxtil). O material foi caracterizado por: RTP, MEV e espectroscopia na região do infravermelho. A adsorção dos materiais foi monitorada por espectroscopia UV-vis.

Resultados e Discussão

1 e 10% de Sn em massa foram incorporados a 2g de nióbia. O material foi calcinado em ar por 3h a 500°C. Utilizou-se a técnica de RTP com tratamento em N_2/H_2 para obtenção de Sn°. Para os testes de adsorção de quinolina (QN) e azul de metileno (AM) foram utilizados 10 mg do compósito Sn/Nb_2O_5 (1 e 10%) e 10 mL de quinolina e azul de metileno nas concentrações: 10, 50 e 250 ppm. A adsorção foi monitorada por espectroscopia UV-vis.

Caracterização dos materiais

• RTP:

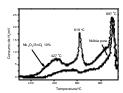
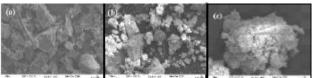



Figura 1. Perfis RTP do compósito estanho/nióbia e da nióbia.

• MEV:

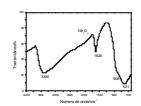


Figura 2. Micrografia de Nb_2O_5 (a), (b) e (c) do compósito Sn/Nb_2O_5 (1 e 10%) respectivamente.

De acordo com a micrografia percebe-se uma mudança na morfologia do material.

31ª Reunião Anual da Sociedade Brasileira de Química

•IV:

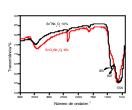
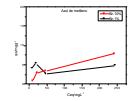
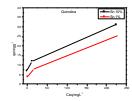




Figura 3. Infravermelho da Nb₂O₅e do Sn⁰/ Nb₂O₅.

O espectro evidencia picos da Nb_2O_5 amorfa² em 621 e 908 cm⁻¹. A formação de Sn^0 na superfície da Nb_2O_5 torna-se evidente pelo aparecimento dos picos 807 e 873 cm⁻¹.

• Adsorção de QN e AM:

Figura 4. Isotermas de adsorção de AM e QN em Sn/Nb_2O_5 .

Os dados apresentados para adsorção de QN e AM mostraram que o compósito contendo maior quantidade de Sn foi mais eficiente na remoção de ambos materiais. O máximo de adsorção para a QN foi 30 mg/g e para o AM foi apenas 6 mg/g de material. O compósito contendo 1% de Sn apresentou máximo de adsorção 20mg/g para a QN e 2,5 mg/g para o AM.

Conclusões

O material contendo 10% em massa na superfície da nióbia apresentou melhor capacidade de adsorção quando comparado com 1% em massa, possivelmente devido ao maior recobrimento da superfície da Nb_2O_5 pelo Sn^o . A QN foi mais adsorvida provavelmente devido a menor estrutura desta molécula.

Agradecimentos

CNPq, CAPES, CAPQ e DQI (UFLA).

¹ Borrego, C.; Miranda, A. I.; Coutinho, M.; Ferreira, J. e Carvalho, A. C.; *Environ. Pollut.* **2002**, 12, 115.

Sociedade Brasileira de Química (SBQ) ² A. Pawlicka.; M. Atik e A. Aegerter. *Thin Solid Films*, **1997**, 301,