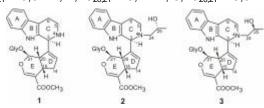
Caracterização conformacional de alcalóides indol monoterpênicos glicosilados

Carolina S. Passos^{1*} (IC), Vitor A. Kerber² (PQ), Hugo Verli^{1,3} (PQ), José A. S. Zuanazzi¹ (PQ), Amélia T. Henriques¹ (PQ). *<u>carolinadspassos@yahoo.com.br</u>


¹Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga 2752, Porto Alegre, 90610-000, Brasil; ²Departamento de Farmácia, UFPR, Av. Presidente Lothario Meisner 632, Curitiba, 80210-170, Brasil; ³Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre, 91500-970, Brasil.

Palavras Chave: Psychotria, alcalóides indólicos, modelagem molecular.

Introdução

O estudo químico das folhas de *Psychotria umbellata* Vell. (Rubiaceae) levou ao isolamento de quatro alcalóides indol monoterpênicos glicosilados¹. A análise conformacional do composto majoritário, psicolatina (1), permitiu a identificação de quatro confôrmeros caracterizados como mínimos de energia, bem como o entendimento das constantes de acoplamento ³J_{H,H} experimentais².

Nesse contexto, os objetivos do presente trabalho foram: a avaliação das características A) conformacionais dos derivados de psicolatina N⁴-[1-(2α-hidroxipropil)]-psicolatina (2) N⁴-[1-(2-βе hidroxipropil)]-psicolatina (3) e; B) a determinação das constantes de acoplamento teóricas ${}^{3}J_{2021}$ de todos os confôrmeros resultantes da análise, visando esclarecer as diferencas observadas nos valores experimentais obtidos para os três alcalóides (1, ${}^{3}J_{20.21} = 9.0 \text{ Hz}$; **2**, ${}^{3}J_{20.21} = 3.2 \text{ Hz}$; **3**, ${}^{3}J_{20.21} = 5.9 \text{ Hz}$).

Resultados e Discussão

Os quatros confôrmeros obtidos através da análise conformacional de psicolatina (1) foram utilizados como ponto de partida para a construção das estruturas dos alcalóides 2 e 3. Desta forma, a realização de cálculos semi-empíricos empregando o método RM1 do programa MOPAC 7.0 permitiu a identificação de quatro conformações para cada um dos compostos em estudo. Os confôrmeros observados referem-se à inversão dos anéis E e C das porções iridoídica e tetraidro-β-carbolínica da molécula, respectivamente. As conformações obtidas para cada alcalóide foram identificadas como: 2E_aC_c, 2E_aC_d, 2E_bC_c e 2E_bC_d, para *N*⁴-[1-(2-α-hidroxipropil)]-psicolatina (2), e 3E_aC_c, 3E_aC_d, 3E_bC_c e 3E_bC_d, para *N*⁴-[1-(2-β-hidroxipropil)]-psicolatina (3).

Em uma etapa posterior, a reparametrização da equação de Karplus, proposta por Haasnoot-Altona³, 31^a Reunião Anual da Sociedade Brasileira de Química

foi utilizada para o cálculo dos valores teóricos da constante de acoplamento ${}^3J_{20,21}$ de todos os confôrmeros estudados. Os dados experimentais e teóricos de ${}^3J_{20,21}$ obtidos para os alcalóides **1**, **2** e **3** são apresentados na **tabela 1**.

Tabela 1. Valores teóricos e experimentais de ${}^3J_{20,21}$ obtidos para os alcalóides psicolatina (1), N^4 -[1-(2-α-hidroxipropil)]-psicolatina (2) e N^4 -[1-(2-β-hidroxipropil)]-psicolatina (3).

compostos	³ J _{20,21} (Hz)				
	exp.	E _a C _c	E _a C _d	E _b C _c	E _b C _d
1	9.0	7,7	7,6	1,1	1,1
2	3.2	6.7	7.8	1,1	1.0
3	5,9	6,8	7,8	1,1	1,0

¹ Valores para o ângulo de diedro H-C-C-H, em graus.

Os resultados indicam uma diferença significativa entre os valores experimentais e teóricos de $^3J_{20,21}$ observados para o alcalóide **2**. Esses resultados são distintos daqueles verificados para **1 e 3**, onde a metodologia empregada foi capaz de prever os valores experimentais de $^3J_{20,21}$ com precisão satisfatória. Os dados obtidos levantam a possibilidade da coexistência de múltiplos estados conformacionais nas condições em que foram conduzidos os experimentos de 1H RMN do alcalóide **2**; e/ou da influência do grupamento ligado ao N-4 na conformação do anel E.

Conclusões

A metodologia empregada permitiu a caracterização conformacional dos alcalóides **2** e **3**. A partir desses resultados abre-se a perspectiva de estudar a prevalência de diferentes estados conformacionais no meio e as razões moleculares para a influência do grupamento ligado ao N4 na conformação do anel E.

Agradecimentos

Apoio financeiro: CAPES, CNPq e FAPERGS.

¹ Kerber, V. A. Ph. D. Thesis, 1999.

² Kerber, V. A.; Passos, C. S.; Verli, H.; Fett-Neto, A. G.; Quirion, J. P.; J.A.; Henriques, A. T. *J. Nat. Prod.*, 2008 (in press).

³ Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. *Tetrahedron* 1980, 36, 2783.