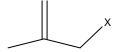
Potencial de ionização de 3-monosubstituídos 2-metilpropenos.

Lucas C. Ducati*¹ (PG), Ivânia T. A. Schuquel¹ (PQ), Rogério Custódio¹ (PQ), Roberto Rittner¹ (PQ) Dieter Klapstein² (PQ).

1- Instituto de Química, UNICAMP – C.P. 6154; CEP-13084-862, Campinas-SP; 2- Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 1C0, Canada. *ducati@igm.unicamp.br.

Palavras Chave: OVGF, metilpropenos.

Introdução


Compostos alílicos a-heterossubstituídos (H₂C=CH-CH₂X) têm um comportamento ímpar em relação a outras olefinas no quesito reatividade e propriedades espectroscópicas.¹⁻³

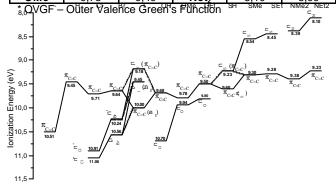
A energia de ionização do propeno é 0,79 eV inferior ao do etileno, o que é atribuído ao efeito indutivo do grupo metila e às interações hiperconjugativas de orbitais $\sigma_{\text{C-H}}$ presentes na conformação gauche. $^{1\text{-}2}$

Já os derivados metalílicos [H₂C=C(CH₃)CH₂X] têm o mesmo comportamento que os alílicos e apresentam similaridades geométricas com as acetonas α-substituídas [O=C(CH₃)CH₂X].⁴

Resultados e Discussão

As energias de ionização experimentais dos derivados metalílicos (Figura 1) foram obtidas a partir da espectroscopia fotoeletrônica. Já as energias de ionização calculadas pelo método OVGF em nível HF/aug-cc-pVDZ foram calculadas com base na conformação mais estável na geometria em MP2/aug-cc-pVDZ.⁵

X=H, Cl, Br, I, OH, OMe, OEt, SH, SMe, SEt, NMe₂ e NEt₂ Figura 1. 2-metilpropenos 3-monossubstituídos.


Pela Tabela 1 nota-se que o erro absoluto estimado pela simples diferença entre os valores teóricos e experimentais de cada energia potencial sugere que o método OVGF provê um bom resultado com um desvio médio de 0,24 eV. Contudo o método apresenta um grande desvio para os derivados nitrogenados na faixa de 0,82 eV e 0,89 eV para NMe₂ e NEt₂, respectivamente, e desvio médio em torno de 0,05 eV para os compostos contendo CI, Br

Para os derivados de S, N e I, a atribuição dos níveis de energia com base nos cálculos NBO em nível MP2/aug-cc-pVDZ indica o orbital HOMO como o n_x , sendo o orbital $\pi_{C=C}$ o HOMO dos demais derivados (Figura 2, linha contínua).

Entretanto a mesma atribuição oriunda dos cálculos OVGF (HF/aug-cc-pVDZ) sugere uma inversão deste resultado para os derivados SH e I (Figura 2, linha tracejada), o que é reforçado por atribuições empíricas feitas simplesmente pela observação e comparação da forma das bandas espectrais.

Tabela 1. Energias de ionização experimental e calculada de 3-monosubstituídos 2-metil propenos.

Х	Exp.	OVGF*	Х	Exp.	OVGF*
Н	9,45	9,21	OEt	9,50	9,44
CI	9,71	9,69	SH	9,23	9,18
Br	9,64	9,57	SMe	8,54	8,43
	9,18	9,34	SEt	8,45	8,34
OH	9,68	9,58	NMe ₂	8,39	9,21
OMe	9.78	9.49	Net₂	8.10	8.99

Figura 2. Energia de ionização experimental dos orbitais moleculares do etileno e derivados metalílicos.

Conclusões

As energias de ionização obtidas pelo método OVGF se mostraram compatíveis com os resultados experimentais. Entretanto, a atribuição dos orbitais para os níveis de energia experimentais é sensível a inclusão ou não de correlação eletrônica para os derivados SH e I.

Agradecimentos

À FAPESP, CNPq e CAPES.

¹ Schmidt, H.; Schweig, A.; Angew. Chem. (Int. Ed. Engl.), 12, **1973**, 307.

² Katrib, A.; Rabalais, J. W.; J. Phys. Chem., 77, 1973, 2358.

Sociedade Brasileira de Química (SBQ)

³ Turchaninov, V. K.; Mirskova, Yu. R.; Russ. Chem. Bull., 44,

¹⁹⁹⁵, 49.
⁴ Schuquel, I. T. A.; Custodio, R.; Oliveira, P. R.; Rittner, R.; *J.* Mol. Struct. (Theochem), 637, **2003**, 43. ⁵ Ortiz, J. V.; J. Chem. Phys. 89, **1998**, 6348.