Síntese e caracterização de um novo dímero de cobre(II)

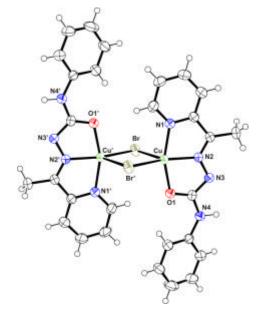
Valéria S. Ferreira (IC)^{1*}, Karine Rover (IC)¹, Claudia C. Gatto (PQ)¹, Ernesto S. Lang (PQ)², Davi F. Back (PG)².*sf.valeria@gmail.com

Palavras Chave: complexo de cobre(II), semicarbazona, estrutura cristalina.

Introdução

O cobre é um elemento traço essencial nos sistemas vivos e está relacionado a importantes reações biológicas de oxidação-redução. Seus complexos polinucleares têm chamado a atenção devido a sua relevância para o centro ativo de diversas metaloenzimas como cobre oxidases¹.

Semicarbazonas constituem uma importante classe de compostos que têm sido estudados devido a sua capacidade quelante e atividade biológica². Este trabalho relata a síntese e caracterização estrutural de um novo dímero de cobre(II) contendo interações Cu-Br, com o ligante 2acetilpiridina-N4-fenil-semicarbazona (Hapfsc).


Resultados e Discussão

O complexo [{CuBr(apfsc)}₂]·2MeOH (Fig. 1) foi obtido através da reação de CuBr₂ com o ligante Hapfsc em MeOH. Os dados da análise por difração de raios-X foram coletados em um difratômetro Brucker CCD APEX II e podem ser observados na tabela 1.

Tabela 1. Dados Cristalográficos para o composto [{CuBr(apfsc)}₂]-2MeOH.

Cubi (apisc//2/2ivieOi i.	
Fórmula	C ₁₅ H ₁₇ N ₄ O ₂ BrCu
Massa Molar	428,78 g·mol ⁻¹
Sistema Cristalino	Triclínico
Grupo Espacial	P1
a (Å)	8,9255(4)
b (Å)	9,1920(3)
c (Å)	11,4979(5)
α (°)	83,596(3)
β (°)	74,912(3)
γ (°)	65,836(3)
Z	2
R_1 / wR_2	0,0565 / 0,1374

O dímero é formado devido às interações Cu-Br, o comprimento desta é 2.8212 Å, consideravelmente maior que o comprimento da ligação Cu-Br de 2,4042 Å. O complexo formado apresenta uma geometria pirâmide de base quadrada distorcida, que pode ser comprovada através dos ângulos e comprimentos de ligações obtidos pela análise de difração de raios-X.

Figura 1. Representação ORTEP do complexo [{CuBr(apfsc)}₂]. As moléculas de metanol foram omitidas por motivo de clareza da figura.

A banda v(C=O) no espectro de IV da semicarbazona pôde ser observada em 1683 cm⁻¹; após a complexação com o cobre a mesma sofre um deslocamento para 1651 cm⁻¹, indicando a coordenação do átomo de oxigênio ao metal. O espectro IV do complexo também apresenta uma banda de vibração em 412 cm⁻¹ que é atribuída à ligação Cu-O.

Conclusões

Interações entre Cu-Br em complexos com semicarbazonas, ainda não observadas na literatura, são fundamentais para a formação do dímero e estabilização dos átomos de cobre. Desta forma, o complexo obtido pode apresentar propriedades biológicas semelhantes às dos compostos polinucleares de cobre(II) com interações Cu-Cl.

Agradecimentos

CNPq

¹Laboratório de Química Inorgânica Preparativa – Universidade de Brasília, Brasília (DF)

²Laboratório de Materiais Inorgânicos – Universidade Federal de Santa Maria, Santa Maria (RS)

¹ Peralta, R. A. et al. J. Inorg. Biochem. **2006**, 100, 992.

² Leovac, V. M.; Jovanovic, L. S.; Jevtovic, V. S.; Pelosi, G.; Bisceglie, F. *Polyhedron* **2007**, *26*, 2971.