Dimerização de compostos 1,3-dicarbonilados por nitrato cérico amoniacal via uma metodologia verde.

Queli Aparecida Rodrigues de Almeida ¹, Ricardo Bezerra Coelho ¹, Erika Martins de Carvalho ², Joel Jones Junior ¹, Flavia Martins da Silva ^{1*}

e-mail: soa@iq.ufrj.br

Palavras Chave: Quimica Verde, nitrato cérico amoniacal, ultra-som

Introdução

Os compostos tetracarbonilados são usados para a síntese de diversos compostos heterocíclicos com interesse medicinal¹. Na literatura encontramos diversas metodologias para a síntese desses compostos como por exemplo: dimerização oxidativa usando iodo², eletrólise³ e oxidação pelo uso de nitrato cérico amoniacal⁴ (CAN).

Nos dias atuais os pesquisadores vêm priorizando processos químicos que levam em conta considerações ambientais na escolha dos reagentes e condições reacionais⁵.

O uso do ultra-som em reações químicas possui vantagens em termos de rendimento, tempo de reação e condições reacionais⁶, podendo ser uma alternativa verde para muitas reações químicas.

No presente trabalho mostramos a dimerização de compostos 1,3-dicarbonilados com uso de CAN substituindo o metanol por água e ultilizando o ultra-som, visando condições reacionais voltadas para o campo da Química Verde.

Resultados e Discussão

Neste trabalho acetilacetona, acetoacetato de etila e malonato de metila são dimerizados na presença de CAN em metanol⁴, água e água com o uso do ultra-som, levando aos produtos em altos rendimentos e/ou tempo de reação muito curto como mostrado na Tabela 1:

Sub st rato	Con diçõe s reacional	Tempo	Pro duto	Rend.(%)
	MeOH / CAN ⁴ H ₂ O / CAN / silêncio H ₂ O / CAN / ultra-so m	1h 1h 2 min		80 51 87
OEt	MeOH / CAN H ₂ O / CAN / silêncio H ₂ O / CAN / ultra-so m	1h 1h 5 min	OEt OEt	40 45 62
Me O OMe	MeOH / CAN ⁴ H ₂ O / CAN / silêncio H ₂ O / CAN / ultra-so m	1h 1h 2 min	MeO OMe	61 56 76

Tabela 1: Síntese de compostos tetracarbonilados 31ª Reunião Anual da Sociedade Brasileira de Química

Na metodologia desenvolvida, observa-se que o solvente tóxico metanol, pode ser substituído por água, tendo produtos em bons rendimentos.

Esses produtos são sólidos facilmente recristalizados de etanol, substituindo o solvente clorado usado anteriormente.

Para o produto 2,3-diacetilsuccinato de dietila, o uso de CAN em metanol é descartado na literatura, pois obtem-se como subproduto a transesterificação do mesmo. A síntese então para esse produto com o uso de CAN em água e/ou água e ultra-som são alternativas para a obtenção deste em bons rendimentos.

Todos os produtos foram analisados por CG-MS, Infra Vermelho e RMN ¹H e ¹³C.

Conclusões

Podemos concluir que os dímeros podem ser formados em ótimos rendimentos substituindo-se a metodologia clássica que utiliza um solvente orgânico tóxico por água.

O uso de ultra-som foi muito eficiente nessas sínteses, visto que os rendimentos das reações são superiores aos obtidos anteriormente e o tempo de reação reduz de 1 hora para 2 à 5 minutos.

Com relação a termos operacionais, a metodologia também se mostra bastante eficiente, visto que os produtos sólidos são filtrados e recristalizados de etanol.

A metodologia aplicada está dentro do campo da Química Verde, substituindo solventes e/ou metodologias que causam danos ao meio ambiente, por solventes não tóxicos e metodologias rápidas e eficientes sem agredir o mesmo.

Agradecimentos

CNPq e CAPES

¹ Dept. Química Orgânica – Instituto de Química – UFRJ – CP 68.584, 21941-972, Rio de Janeiro, RJ, Brasil

² Instituto de Tecnologia em Fármacos, Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brasil

¹ Malinka, W.; Boldalski T. *Polish J. Chem.* **1994**, 68, 297-307

Sociedade Brasileira de Química (SBQ)

² Wu, A.; Zhao, Y.; Chen, N.; Pan, X. Synt. Comm. **1997**, 27, 2, 331-336

³ Organic Syntheses Coll. **1981**, 60, 78-81

⁴ Romero, J.R.; Cho, L.Y. *Tetrahedron Letters* **1995**, 36, 48, 8757-8760

⁵ Silva da, F. M.; Jones J. J. Braz. Chem. Soc. **2001**, 12, 2, 137

⁶ Bonrath, W. Ultrason. Sonochem. **2003**, 10, 55–59