O papel do íon K^+ e das vacâncias de $Fe(CN)_6$ durante a variação composicional *in situ* do azul da Prússia $(K_hFe_k[Fe(CN)_6]_hmH_2O)$

Grazielle de Oliveira Setti^{1*} (PG), Paulo Roberto Bueno¹ (PQ), Fabio Furlan Ferreira² (PQ) *grazielle_setti@yahoo.com.br

Palavras Chave: Hexacianoferratos, Azul da Prússia, DRX

Introdução

O azul da Prússia (AZP), composto mais comum entre os hexacianoferratos, tem fórmula geral $A_h Fe_k [Fe(CN)_6]_{l.} mH_2O$ (A = metal alcalino, nesse trabalho, A = K+). Esse composto é de grande interesse devido a uma série de propriedades que possui, como eletroatividade e eletrocromismo. Estudos recentes discutem a ocorrência de um (mudanças configuracionais changeover conduzem a variações nas propriedades compostos desse tipo) durante а composicional in situ do composto, bem como o papel dos íons K⁺, H⁺ e H₃O⁺ nesse changeover¹. O AZP foi obtido na forma de filme sobre Pt conforme descrito na referência¹. Foram realizadas medidas de difração de raios X (DRX) no Laboratório Nacional de Luz Síncrotron (LNLS, Campinas - SP).

Resultados e Discussão

Os resultados obtidos com o refinamento de Rietveld permitiram a construção de um modelo esquemático para o AZP que possui K⁺ em sua estrutura. Foi encontrado que o íon K⁺ se localiza ao redor das moléculas de água estrutural (posição 24e) que se coordenam ao Fe³⁺, ocupando vacâncias de Fe(CN)₆ da estrutura. Os resultados obtidos permitiram também determinar uma estequiometria média do AZP estudado. A Tabela 1 apresenta o valor estequiométrico médio de cada átomo da estrutura.

Tabela 1: valores estequiométricos médios dos átomos da estrutura do AZP.

К	2.292
Fe(III)	4
Fe(II)	3,002
С	18,013
N	18,013
0	13,368

Desses valores tem-se que a fórmula do composto pode ser escrita como $K_{2,3}$ Fe $_4$ [Fe(CN) $_6$] $_3$.mH $_2$ O e que a razão k/I=1,332(2), o que confirma que as moléculas de água ocupam as posições vazias do N e valida o mecanismo de troca iônica durante a variação composicional 1 . A razão k/I também revela uma quantidade de vacâncias de Fe(CN) $_6$ equivalente a aproximadamente 25-30% das posições totais. O *changeover* ocorre exatamente quando há um pico de

corrente durante a variação composicional in situ. Ele não é acompanhado por uma variação de massa¹, embora esteja indiretamente envolvido com a entrada de íons K+, como foi observado por resultados de medidas eletrogravimétricas¹. Por isso, nesse trabalho é proposta uma descrição mais precisa para o mecanismo envolvido com o changeover. Até o ponto do changeover há uma injeção de 25-30% da carga que entra na estrutura durante a variação composicional. Essa carga é compensada por K⁺, H⁺ e H₃O⁺. Nas vacâncias de Fe(CN)₆ devem existir estruturas do tipo Fe⁺³(NC)_{6-x}.xH₂O. Neste ponto, podemos assumir que a razão [Fe3+(CN)6]kn / [Fe²(CN)₆]_n varia aleatoriamente durante a variação de ne, isto é, não há posição estrutural energeticamente favorável para os elétrons na conversão de Fe³⁺ para Fe²⁺ nas posições octaedricamente coordenadas pelo N. Assim, a mudança na valência do íon ferro ocorre provavelmente no Fe3+ (CN)6-x.xH2O, nas vacâncias onde o íon K+ se localiza ao redor das águas coordenadas. Quando 25-30% da carga é injetada, o estado eletrônico local dessas posições muda para $Fe^{+3}_{k\cdot n}Fe^{2+}_{n}(CN)_{6-x\cdot x}H_{2}O$. É nesse ponto que ocorre o pico de corrente na estabilização do AZP. Com base nisso, atribui-se o changeover a essa conversão eletrônica Fe3+/Fe2+. Estruturalmente, o changeover pode ser descrito como uma mudança na composição do K_hFe_k[Fe(CN)₆], mH₂O para uma nova composição próxima а $A_h Fe^{3+}_{k-0,25}$ Fe²⁺_{0.25}[Fe(CN)₆]₁.mH₂O, no qual existe uma desordem estrutural localizada, ou seja, Fe²⁺025(CN)₆-x.xH₂O.

Conclusões

O changeover se deve a uma conversão eletrônica da estrutura, e não depende de compensação de carga acompanhada de variação de massa (íon K^+). As vacâncias de Fe(CN) $_6$ possuem papel importante, pois estão relacionadas à conversão.

Agradecimentos

Ao LNLS pelas medidas de DRX e à FAPESP pelo apoio financeiro.

¹ Instituto de Química, Universidade Estadual Paulista - UNESP, C. Postal 355, 14800-900, Araraquara, SP.

² Laboratório Nacional de Luz Síncrotron, C. Postal 6192, 13083-970, Campinas, SP

¹ Gimenez-Romero, D.; Bueno, P. R. et. al. ., J. Phys. Chem. B 2006, 110, 2715.